Инд. авторы: Sokol E.V., Kokh S.N., Seryotkin Y.V., Deviatiiarova A.S., Goryainov S.V., Sharygin V.V., Khoury H.N., Karmanov N.S., Danilovsky V.A., Artemyev D.A.
Заглавие: Ultrahigh-Temperature Sphalerite from Zn-Cd-Se-Rich Combustion Metamorphic Marbles, Daba Complex, Central Jordan: Paragenesis, Chemistry, and Structure
Библ. ссылка: Sokol E.V., Kokh S.N., Seryotkin Y.V., Deviatiiarova A.S., Goryainov S.V., Sharygin V.V., Khoury H.N., Karmanov N.S., Danilovsky V.A., Artemyev D.A. Ultrahigh-Temperature Sphalerite from Zn-Cd-Se-Rich Combustion Metamorphic Marbles, Daba Complex, Central Jordan: Paragenesis, Chemistry, and Structure // MINERALS. - 2020. - Vol.10. - Iss. 9. - Art.822.
Внешние системы: DOI: 10.3390/min10090822; РИНЦ: 45321451; WoS: 000581975300001;
Реферат: eng: Minerals of the Zn-Cd-S-Se system that formed by moderately reduced similar to 800-850 degrees C combustion metamorphic (CM) alteration of marly sediments were found in marbles from central Jordan. Their precursor sediments contain Se- and Ni-enriched authigenic pyrite and ZnS modifications with high Cd enrichment (up to similar to 10 wt%) and elevated concentrations of Cu, Sb, Ag, Mo, and Pb. The marbles are composed of calcite, carbonate-fluorapatite, spurrite, and brownmillerite and characterized by high P, Zn, Cd, U, and elevated Se, Ni, V, and Mo contents. Main accessories are either Zn-bearing oxides or sphalerite, greenockite, and Ca-Fe-Ni-Cu-O-S-Se oxychalcogenides. CM alteration lead to compositional homogenization of metamorphic sphalerite, for which trace-element suites become less diverse than in the authigenic ZnS. The CM sphalerites contain up to similar to 14 wt% Cd and similar to 6.7 wt% Se but are poor in Fe (means 1.4-2.2 wt%), and bear 100-250 ppm Co, Ni, and Hg. Sphalerite (Zn,Cd,Fe)(S,O,Se)(cub) is a homogeneous solid solution with a unit cell smaller than in ZnScub as a result of S2- -> O2- substitution (a = 5.40852(12) angstrom, V = 158.211(6) angstrom(3)). The amount of lattice-bound oxygen in the CM sphalerite is within the range for synthetic ZnS1-xOx crystals (0 < x <= 0.05) growing at 900 degrees C.
Ключевые слова: URANIUM; SULFIDE; MINERALS; PHASE-EQUILIBRIA; CARBOTHERMIC REDUCTION; SYSTEM ZNS; SOLID-SOLUTIONS; HATRURIM-FORMATION; combustion metamorphism; Mottled Zone; trace elements; greenockite; wurtzite; sphalerite; ZnS; PYROMETAMORPHIC ROCKS; BASIN;
Издано: 2020
Физ. характеристика: 822
Цитирование: 1. Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. 2. Barton, P.B. Sulfide Petrology; Ribbe, P.H., Ed.; Mineralogical Society of America Reviews in Mineralogy: Sully, VA, USA, 1974; Volume 1; pp. B1–B11. 3. Brown, J.L.; Christy, A.G.; Ellis, D.J.; Arculus, R.J. Prograde sulfide metamorphism in blueschist and eclogite, New Caledonia. J. Petrol. 2014, 55, 643–670. 4. Fleurance, S.; Cuney, M.; Malartre, M.; Reyx, J. Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeog. Palaeoclim. Palaeoecol. 2013, 369, 201–219. 5. Sharygin, V.V.; Lazic, B.; Armbruster, T.M.; Murashko, M.N.; Wirth, R.; Galuskina, I.O.; Galuskin, E.V.; Vapnik, Ye.; Britvin, S.N.; Logvinova, A.M. Shulamitite Ca3TiFe3+AlO8—A new perovskite-related mineral from Hatrurim Basin, Israel. Eur. J. Miner. 2013, 25, 97–111. 6. Sharygin, V.V. Orthorhombic CaCr2O4 in Phosphide-Bearing Gehlenite-Rankinite Paralava from Hatrurim Basin, Israel. In Proceedings of the Conference Magmatism of the Earth and Related Strategic Metal Deposits, Saint Petersburg, Russia, 23–26 May 2019; pp. 272–276. 7. Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep. 2015, 5, 8355. 8. Britvin, S.N.; Murashko, M.N.; Vereshchagin, O.S.; Vapnik, Y.; Shilovskikh, V.V.; Vlasenko, N.S. Polekhovskyite, IMA 2018-147. CNMNC Newsletter No. 48, April 2019: Page 316. Miner. Mag. 2019, 83, 315–317. 9. Britvin, S.N.; Murashko, M.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Vereshchagin, O.S.; Shilovskikh, V.V.; Krzhizhanovskaya, M.G. Negevite, the pyrite-type NiP2, a new terrestrial phosphide. Am. Miner. 2020, 105, 422–427. 10. Britvin, S.N.; Murashko, M.N.; Vapnik, Ye.; Polekhovsky, Y.S.; Krivovichev, S.V.; Krzhizhanovskaya, M.O.; Vereshchagin, O.S.; Shilovskikh, V.V.; Vlasenko, N.S. Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P). Am. Miner. 2020, 105, 428–436. 11. Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Vereshchagin, O.S.; Shilovskikh, V.V.; Vlasenko, N.S.; Krzhizhanovskaya, M.G. Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Phys. Chem. Miner. 2020, 47, 3. 12. Galuskina, I.O.; Krüger, B.; Galuskin, E.V.; Krüger, H.; Vapnik, Y.; Murashko, M.; Agakhanov, A.A.; Pauluhn, A.; Olieric, V. Zoharite, IMA 2017-049. CNMNC Newsletter No. 39. Miner. Mag. 2017, 81, 1279– 1286. 13. Galuskina, I.O.; Krüger, B.; Galuskin, E.V.; Krüger, H.; Vapnik, Y.; Banasik, K.; Murashko, M.; Agakhanov, A.A.; Pauluhn, A. Gmalimite, IMA 2019-007. CNMNC Newsletter No. 50. Miner. Mag. 2019, 83, 31. 14. Sokol, E.V.; Kozmenko, O.A.; Khoury, H.N.; Kokh, S.N.; Novikova, S.A.; Nefedov, A.A.; Sokol, I.A.; Zaikin, P. Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Res. 2017, 46, 204–226. 15. Sokol, E.V.; Kokh, S.N.; Sharygin, V.V.; Danilovsky, V.A.; Seryotkin, Y.V.; Liferovich, R.; Deviatiiarova, A.S.; Nigmatulina, E.N.; Karmanov, N.S. Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: Implications for storage and partitioning of elements in oil shale clinkering. Minerals 2019, 9, 465. 16. Danilovsky, V.A.; Deviatiiarova, A.S. Unusual sulfides Fe, K, Ca, Ni, Zn, Ag and selenides Fe, Cu, Ni, Zn, Cd from combustion metamorphic spurrite marbles, the Hatrurim Formation. In Proceedings of the Conference Mineralogical Museum 2019. Mineralogy Yesterday, Today, Tomorrow, Saint Petersburg, Russia, 17–19 September 2019, pp. 110–112. 17. Techer, I.; Khoury, H.N.; Salameh, E.; Rassineux, F.; Claude, C.; Clauer, N.; Pagel, M.; Lancelot, J.; Hamelin, B.; Jacquot, E. Propagation of high-alkaline fluids in an argillaceous formation: Case study of the Khushaym Matruk natural analogue (Central Jordan). J. Geochem. Explor. 2006, 90, 53–67. 18. Khoury, H.; Sokol, E.; Clark, I. Calcium uranium oxides from Central Jordan: Mineral assemblages, chemistry, and alteration products. Can. Miner. 2015, 53, 61–82. 19. Khoury, H.N.; Sokol, E.V.; Kokh, S.N.; Seryotkin, Y.V.; Kozmenko, O.A.; Goryainov, S.V.; Clark, I.D. Intermediate members of the lime-monteponite solid solutions (Ca1–xCdxO, x = 0.36–0.55): Discovery in natural occurrence. Am. Miner. 2016, 101, 146–161. 20. Khoury, H.N.; Sokol, E.V.; Kokh, S.N.; Seryotkin, Y.V.; Nigmatulina, E.N.; Goryainov, S.V.; Belogub, E.V.; Clark, I.D. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: A new Ca zincate-aluminate from combustion metamorphic marbles, Central Jordan. Miner. Petrol. 2016, 110, 125–140. 21. Khoury, H.; Kokh, S.N.; Sokol, E.V.; Likhacheva, A.Y.; Seryotkin, Y.V.; Belogub, E.V. Ba-and Sr-mineralization of fossil fish bones from metamorphosed Belqa Group sediments, Central Jordan: An integrated methodology. Arab. J. Geosci. 2016, 9, 461. 22. Sokol, E.V.; Kokh, S.N.; Khoury, H.N.; Seryotkin, Y.V.; Goryainov, S.V. Long-term immobilization of Cd2+ at the Tulul Al Hammam natural analogue site, Central Jordan. Appl. Geochem. 2016, 70, 43–60. 23. Sokol, E.V.; Kokh, S.N.; Khoury, H.N.; Seryotkin, Y.V.; Goryainov, S.V.; Novikova, S.A.; Sokol, I.A. Natural analogue approaches to prediction of long-term behavior of Ca2UO5·2–3H2O ‘X-Phase’: Case study from Tulul Al Hammam site, Jordan. Arab. J. Geosci. 2017, 10, 512. 24. Vapnik, Ye.; Galuskin, E.V.; Galuskina, I.O.; Kusz, J.; Stasiak, M.; Krzykawski, T.; Dulski, M. Qatranaite, CaZn2(OH)6·2H2O: A new mineral from altered pyrometamorphic rocks of the Hatrurim Complex, Daba-Siwaqa, Jordan. Eur. J. Miner. 2019, 31, 575–584. 25. Hotje, U.; Rose, C.; Binnewies, M. Lattice constants and molar volume in the system ZnS, ZnSe, CdS, CdSe. Solid State Sci. 2003, 5, 1259–1262. 26. Locmelis, S.; Brünig, C.; Binnewies, M.; Börger, A.; Becker, K.D.; Homann, T.; Bredow, T. Optical band gap in the system ZnO1–xSx. An experimental and quantum chemical study. J. Mater. Sci. 2007, 42, 1965–1971. 27. Fan, X.F.; Shen, Z.X.; Lu, Y.M.; Kuo, J.L. A theoretical study of thermal stability and electronic properties of würtzite and zinc blende ZnOxS1−x. New J. Phys. 2009, 11, 093008. 28. Bellouche, A.; Gueddim, A.; Zerroug, S.; Bouarissa, N. Elastic properties and optical spectra of ZnS1−xOx dilute semiconductor alloys. Optik 2016, 127, 11374–11378. 29. Zagorac, D.; Zagorac, J.; Schön, J.C.; Stojanović, N.; Matović, B. ZnO/ZnS (hetero) structures: Ab initio investigations of polytypic behavior of mixed ZnO and ZnS compounds. Acta Cryst. B Struct. Sci. Cryst. Eng. Mater. 2018, B74, 628–642. 30. Abed, A.M.; Arouri, K.R.; Boreham, C.J. Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Mar. Pet. Geol. 2005, 22, 413–425. 31. Powell, J.H.; Moh’d, B.K. Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and south Jordan. GeoArabia 2011, 16, 29–82. 32. Khoury, H.; Salameh, E.; Clark, I. Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Appl. Geochem. 2014, 43, 49–65. 33. Shatsky, V.; Sitnikova, E.; Kozmenko, O.; Palessky, S.; Nikolaeva, I.; Zayachkovsky, A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 2006, 47, 482–496. 34. Element, C.A.S. Method 3051A-microwave assisted acid digestion of sediments, sludges, soils, and oils. Z. Anal. Chem. 2007, 111, 362–366. 35. Carvalho, L.; Monteiro, R.; Figueira, P.; Mieiro, C.; Almeida, J.; Pereira, E.; Magalhães, V.; Pinheiro, L.; Vale, C. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: Evidence of Cd, As and Ba fronts in upper layers. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 131, 133–143. 36. Shuvaeva, O.V.; Gustaytis, M.A.; Anoshin, G.N. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection. Anal. Chim. Acta 2008, 621, 148–154. 37. Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalyses of minerals: Microanalyzer or scanning electron microscope? Russ. Geol. Geophys. 2015, 56, 1154–1161. 38. Sharygin, V.V.; Yakovlev, G.A.; Wirth, R.; Seryotkin, Y.V.; Sokol, E.V.; Nigmatulina, E.N.; Karmanov, N.S.; Pautov, L.A. Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a new perovskite-supergroup mineral from Hatrurim Basin, Negev Desert, Israel. Minerals 2019, 9, 700. 39. Sharygin, V.V. Phase CuCrS2 in Iron Meteorite Uakit (IIAB), Buryatia, Russia: Preliminary Data; Votyakov, S., Kiseleva, D., Grokhovsky, V., Shchapova, Y., Eds.; Earth and Environmental Sciences Book Series, Minerals: Structure, Properties, Methods of Investigation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 229–236. 40. Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Lyman, C.E.; Lifshin, E.; Sawyer, L.; Michael, J.R. Quantitative X-ray Analysis: The Basics. In Scanning Electron Microscopy and X-ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2003; pp. 391–451. 41. Humphries, D.W. The Preparation of Thin Sections of Rocks, Minerals and Ceramics. In Royal Microscopical Society Microscopy Handbooks (Book 24); Oxford University Press: Oxford, UK, 1992. 42. Artemyev, D.A.; Ankushev, M.N. Trace elements of Cu-(Fe)-sulfide inclusions in bronze age copper slags from South Urals and Kazakhstan: Ore sources and alloying additions. Minerals 2019, 9, 746. 43. Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. 44. Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom. 2002, 17, 406–409. 45. Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. 46. CrysAlis, C.C.D. CrysAlis RED 171.37.35; Oxford Diffraction Ltd.: Abingdon, UK, 2008. 47. Model S506 Interactive Peak Fit User’s Manual; Canberra Industries Inc.: Canberra, Australia, 2002. 48. Abed, A.M.; Arouri, K.; Amiereh, B.S.; Al-Hawari, Z. Characterization and genesis of some Jordanian oil shales. Dirasat Pure Sci. 2009, 36, 7–17. 49. Abed, A. Review of uranium in the Jordanian phosphorites: Distribution, genesis and industry. Jordan J. Earth Environ. Sci. 2012, 4, 35–45. 50. Abed, A.; Sadaqah, R. Enrichment of uranium in the uppermost Al-Hisa Phosphorite Formation, Eshidiyya basin, southern Jordan. J. Afr. Earth Sci. 2013, 77, 31–40. 51. März, C.; Wagner, T.S.; Al-Alaween, A.M.; Boorn, S.; Podlaha, O.G.; Kolonic, S.; Poulton, S.W.; Schnetger, B.; Brumsack, H.-J. Repeated enrichment of trace metals and organic carbon on an Eocene high-energy shelf caused by anoxia and reworking. Geology.2016, 44, 1011–1014. 52. Hakimi, M.H.; Abdullah, W.H.; Alqudah, M.; Makeen, Y.M.; Mustapha, K.A. Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: Origin of organic matter input and preservation conditions. Fuel 2016, 181, 34–45. 53. Hamarneh, Y. Oil Shale Resources Development in Jordan; Natural Resources Authority: Amman, Jordan, 1998; p. 98. 54. Khoury, H. Tripolization of chert in Jordan. Sediment Geol. 1987, 53, 305–310. 55. Khoury, H. Mineralogy and petrography of some opaline phase from Jordan. Neues Jahrb. Miner. Abh. 1989, 10, 433–440. 56. Skinner, B.J. Unit-cell edges of natural and synthetic sphalerites. Am. Miner. 1961, 46, 1399–1411. 57. Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. 58. Skinner, B.J.; Barton, P.B. The substitution of oxygen for sulfur in würtzite and sphalerite. Am. Miner. 1960, 45, 612–625. 59. Van Aswegen, J.T.S.; Verleger, H. Röntgenographische untersuchung des systems ZnS-FeS. Naturwiss 1960, 47, 131. 60. Barton, P.B.; Toulmin, P. Phase relation involving sphalerite in the Fe-Zn-S system. Econ. Geol. 1966, 61, 815–849. 61. Osadchii, E.G.; Gorbaty, Y.E. Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1-xS). Geochim. Cosmochim. Acta 2010, 74, 568–573. 62. Brese, N.E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B Struct. Sci. 1991, 47, 192–197. 63. Serrano, J.; Cantarero, A.; Cardona, M.; Garro, N.; Lauck, R.; Tallman, R.E.; Ritter, T.M.; Weinstein, B.A. Raman scattering in β–ZnS. Phys. Rev. B. 2004, 69, 014301. 64. Fairbrother, A.; Izquierdo-Roca, V.; Fontané, X.; Ibáñez, M.; Cabot, A.; Saucedo, E.; Pérez-Rodríguez, A. ZnS grain size effects on near-resonant Raman scattering: Optical non-destructive grain size estimation. CrystEngComm 2014, 16, 4120–4125. 65. Wright, K.; Gale, J.D. Interatomic potentials for the simulation of the zinc-blende and würtzite forms of ZnS and CdS: Bulk structure, properties, and phase stability. Phys. Rev. B Condens. Matter. Mater. Phys. 2004, 70, 035211. 66. Makovicky, E. Crystal structures of sulfides and other chalcogenides. In Sulfide Mineralogy and Geochemistry; Vaughan, D.J., Ed.; Mineralogical Society of America Reviews in Mineralogy and Geochemistry: Sully, VA, USA, 2006, Volume 61; pp. 7–125. 67. Britvin, S.N.; Bogdanova, A.N.; Boldyreva, M.M.; Aksenova, G.Y. Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description and crystal structure. Am. Miner. 2008, 93, 902–909. 68. Vaughan, D.J. (Ed.) Sulfide Mineralogy and Geochemistry; Mineralogical Society of America Reviews in Mineralogy and Geochemistry: Sully, VA, USA, 2006, Volume 61; p. 714. 68. Toulmin, P.; Barton, P.B.; Wiggins, L.B. Commentary on the sphaleritegeobarometer. Am. Miner. 1991, 76, 1038–1051. 69. Kaneko, S.; Aoki, H.; Kawahara, Y.; Imoto, F.; Matsumoto, K. Solid solutions and phase transformations in the system ZnS-CdS under hydrothermal conditions. J. Electrochem. Soc. 1984, 131, 1445–1146. 70. Tomashyk, V.; Feychuk, P.; Scherbak, L. Ternary Alloys Based on II-Vi Semiconductor Compounds, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; p. 560. 71. Lin, Y.; El Goresy, A. A comparative study of opaque phases in Qingzhen (EH3) and MacAlpine Hills 88136 (EL3): Representatives of EH and EL parent bodies. Meteorit. Planet. Sci. 2002, 37, 577–599. 72. Sokol, E.V.; Deviatiiarova, A.S.; Kokh, S.N.; Reverdatto, V.V.; Artemyev, D.A.; Kolobov, V.Y. Sulfide mineralization hosted by spurrite-mervinite marbles (Kochumdek River, East Siberia). Dokl. Earth Sci. 2019, 489, 1326–1329. 73. Chaplygin, I.V.; Mozgova, N.N.; Mokhov, A.V.; Koporulina, E.V.; Bernhardt, H.J.; Bryzgalov, I.A. Minerals of the system ZnS-CdS from fumaroles of the Kudriavy volcano, Iturup Island, Kuriles, Russia. Can. Miner. 2007, 45, 709–722. 74. Chaplygin, I.V. Ore Mineralization of High-Temperature Fumaroles of Kudriavy Volcano (Iturup Island, Kurile Islands). Ph.D. Thesis, IGEM RAS, Moscow, Russia, 2009. (In Russian) 75. Vaughan, D.; Craig, J. Mineral Chemistry of Metal Sulfides; Cambridge University Press: Cambridge, UK, 1986. 76. Fedorov, V.A.; Ganshin, V.A.; Korkishko, Y.N. Solid-state phase diagram of the zinc sulfide-cadmium sulfide system. Mater. Res. Bull. 1993, 28, 59–66. 77. Vasil’ev, V.I. New data on the composition of metacinnabar and Hg-sphalerite with an isomorphous Cd admixture. Russ. Geol. Geophys. 1991, 52, 701–708. 78. Grammatikopoulos, T.; Valeyev, O.; Roth, T. Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada. Chem. Erde 2006, 66, 307–314. 79. Orberger, B.; Pasava, J.; Gallien, J.-P.; Daudin, L.; Trocellier, P. Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from Black Shales (Selwyn Basin, Yukon territories, Canada): A nuclear microprobe study. Nucl. Instrum. Methods Phys. Res. 2003, 210, 441–448. 80. Pirri, I.V. On the occurrence of selenium in sulfides of the ore deposit of Baccu Locci (Gerrei, SE Sardinia). Neues Jahrb. Mineral. Mon. 2002, 2002, 207–224. 81. Ueno, T.; Scott, S.D. Solubility of gallium in sphalerite and würtzite at 800 °C and 900 °C. Can. Miner. 1991, 29, 143–148. 82. Johan, Z. Indium and germanium in the structure of sphalerite: An example of coupled substitution with copper. Miner. Petrol. 1988, 39, 211–229. 83. Ciobanu, C.L.; Cook, N.J.; Pring, A.; Damian, G.; Capraru, N. Another look at nagyágite from the type locality, Săcărîmb, Romania: Replacement, chemical variation and petrogenetic implications. Miner. Petrol. 2008, 93, 273–307. 84. Ye, L.; Cook, N.J.; Liu, T.; Ciobanu, C.L.; Gao, W.; Yang, Y. The Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou province, southwest China: Ore genesis and mechanisms of cadmium concentration. Miner. Depos. 2012, 47, 683–700. 85. Sokol, E.V.; Volkova, N.I. Combustion metamorphic events resulting from natural coal fires. In GSA Reviews in Engineering Geology XVIII: Geology of Coal Fires: Case Studies from around the World; Stracher, G.B., Ed.; The Geological Society of America: Boulder, CO, USA, 2007; pp. 97–115. 86. Grapes, R.; Korzhova, S.; Sokol, E.; Seryotkin, Y. Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia. Contrib. Miner. Petrol. 2011, 162, 253–273. 87. Sokol, E.; Sharygin, V.; Kalugin, V.; Volkova, N.; Nigmatulina, E. Fayalite and kirschsteinite solid solutions in melts from burned spoil-heaps, South Urals, Russia. Eur. J. Miner. 2002, 14, 795–807. 88. Marks, M.A.W.; Wenzel, T.; Whitehouse, M.J.; Loose, M.; Zack, T.; Barth, M.; Worgard, L.; Krasz, V.; Eby, G.N.; Stosnach, H. et al. The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. Chem. Geol. 2012, 291, 241–255. 89. Parat, F.; Dungan, M.A.; Streck, M.J. Anhydrite, pyrrhotite, and sulfur-rich apatite: Tracing the sulfur evolution of an Oligocene andesite (Eagle Mountain, CO, USA). Lithos 2002, 64, 63–75. 90. Zateeva, S.N.; Sokol, E.V.; Sharygin, V.V. Specificity of pyrometamorphic minerals of the ellestadite group. Geol. Ore Depos. 2007, 49, 792–805. 91. Kokh, S.N.; Sokol, E.V.; Sharygin, V.V. Ellestadite-group minerals in combustion metamorphic rocks. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, Chapter 20, pp. 543–562. 92. Khoury, H.N. High-and low-temperature mineral phases from the pyrometamorphic rocks, Jordan. Arab. J. Geosci. 2020, 13, 734. 93. Galuskin, E.V.; Gfeller, F.; Galuskina, I.O.; Pakhomova, A.; Armbruster, T.; Vapnik, Y.; Wlodyka, R.; Dzierżanowski, P.; Murashko, M. New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Miner. Mag. 2015, 79, 1073–1087. 94. Sharygin, V.V.; Sokol, E.V.; Vapnik, Y. Minerals of the pseudobinary perovskite–brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russ. Geol. Geophys. 2008, 49, 709–726. 95. Danilovsky, V.A.; Sokol, E.V.; Karmanov, N.S.; Kokh, S.N.; Devyatiyarova, A.S.; Sharygin, V.V.; Nigmatulina, E.N. Ca-Fe high-temperature oxysulfide: First finding in nature. Nat. Sci. 2018, 2, 32–37. (In Russian). 96. Rosenqvist, T. Phase equilibria in the pyrometallurgy of sulfide ores. Metall. Mater. Trans. B 1978, 9, 337–351. 97. Jha, A.; Grieveson, P. Carbothermic reduction of pyrrhotite in the presence of lime for the production of metallic iron. II: Kinetics and mechanism of reduction. Scand. J. Metall. 1992, 21, 50–62. 98. Jha, A.; Tang, S.; Chrysanthou, A. Phase equilibria in the metal-sulfur-oxygen system and selective reduction of metal oxides and sulfides: Part I. The carbothermic reduction and calcination of complex mineral sulfides. Metall. Mater. Trans. B 1996, 27, 829–840. 99. Selivanov, E.N.; Chumarev, V.M.; Gulyaeva, R.I.; Mar’evich, V.P.; Vershinin, A.D.; Pankratov, A.A.; Korepanova, E.S. Composition, structure, and thermal expansion of Ca3Fe4S3O6 and CaFeSO. Inorg. Mater. 2004, 40, 845–850. (In Russia) 100. Gulyaeva, R.I.; Selivanov, E.N.; Mansurova, A.N. Kinetics of the calcium oxysulfides reduction by carbon monoxide. Defect Diffus. Forum 2009, 283, 539–544. 101. Kopylov, N.I.; Lata, V.A.; Toguzov, M.Z. Interactions and Phase States in Molten Sulfide Systems; Gylym: Almaty, Kazakhstan, 2001. 102. Polat, I.; Aksu, S.; Altunbas, M.; Bacaks, E. Microstructural, optical and magnetic properties of cobalt-doped zinc oxysulfide thin films. Mater. Сhem. Phys. 2011, 130, 800–805. 103. Cheng, Q.; Wang, D.; Zhou, H. Electrodeposition of Zn(O,S) (zinc oxysulfide) thin films: Exploiting its thermodynamic and kinetic processes with incorporation of tartaric acid. J. Energy Chem. 2017, 27, 913–922. 104. Selivanov, E.; Gulyaeva, R. Chemistry and kinetics (TG/DTA-MS) of metals carbothermical reduction in the FeS-Ni3S2-CaO system. In Proceedings of the 13th Israeli-Russian Bi-National Workshop “The Optimization of Composition, Structure and Properties of Metals, Oxides, Composites, Nano-and Amorphous Materials”, Yekaterinburg, Russia, 13–18 September 2014; pp. 204–220. 105. Schwartz, M.O. Cadmium in zinc deposits: Economic geology of a polluting element. Int. Geol. Rev. 2000, 42, 445–469. 106. Achternbosch, M.; Bräutigam, K.-R.; Hartlieb, N.; Kupsch, C.; Richers, U.; Stemmermann, P. Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste utilization. In Forschungszentrum Karlsruhe in der Helmholtz-Ge-Meinschaft Wissenschaftliche Berichte FZKA 6923; Umwelt Bundes Amt.: Dessau-Roßlau, Germany, 2003; 200p. 107. Deng, S.; Shi, Y.; Liu, Y.; Zhang, C.; Wang, X.; Cao, Q.; Li, S.; Zhang, F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. Technol. 2014, 126, 469–475. 108. Cui, W.; Meng, Q.; Feng, Q.; Zhou, L.; Cui, Y.; Li, W. Occurrence and release of cadmium, chromium, and lead from stone coal combustion. Int. J. Coal Sci. Technol. 2019, 6, 586–594. 109. Vapnik, Y.; Galuskina, I.; Palchik, V.; Sokol, E.V.; Galuskin, Y.; Lindsley-Griffin, N.; Stracher, G.B. Stone-tool workshops of the Hatrurim Basin, Israel. In Coal Peat Fires: A Glob. Perspect. Case Studies-Coal Fires; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3; pp. 3282–3316. 110. Becker, W.; Lutz, H.D. Phase studies in the systems CoS-MnS, CoS-ZnS, and CoS-CdS. Mater. Res. Bull. 1978, 13, 907–911. 111. Wu, P.; Kershaw, R.; Dwight, K.; Wold, A. Growth and characterization of nickel-doped ZnS single crystals. Mater. Res. Bull. 1989, 24, 49–53. 112. Vapnik, Y.; Sokol, E.; Murashko, M.; Sharygin, V. The enigma of Hatrurim. Mineral. Alm. 2006, 10, 69–77. 113. Sharygin, V.V.; Vapnik, Y. Ferrites and silicoferrites in magnetite-hematite nodule, Hatrurim Basin, Israel. In Proceedings of the Conference Mineralogical Museum 2019. Mineralogy Yesterday, Today, Tomorrow, Saint Petersburg, Russia, 17–19 September 2019, pp. 190–192. 114. Britvin, S.N.; Murashko, M.N.; Vapnik, E.; Polekhovsky, Y.S.; Krivovichev, S.V. Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol. Ore Depos. 2017, 59, 619–625. 115. Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Vereshchagin, O.S.; Vlasenko, N.S.; Shilovskikh, V.V.; Zaitsev, A.N. Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys. Chem. Miner. 2019, 46, 361–369. 116. Britvin, S.N.; Murashko, M.N.; Krzhizhanovskaya, M.G.; Vereshchagin, O.S.; Vapnik, Y.; Shilovskikh, V.V.; Lozhkin, M.S. Nazarovite, IMA 2019-013. CNMNC Newsletter No. 50. Miner. Mag. 2019, 83, doi:10.1180/mgm.2019.46. 117. Britvin, S.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Krzhizhanovskaya, M.G.; Gorelova, L.A.; Vereshchagin, O.S.; Shilovskikh, V.V.; Zaitsev, A.N. Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Miner. Petrol. 2019, 113, 237–248. 118. Morozova, N.K.; Malov, M.M.; Veselkova, M.M.; Kurbatov, B.A. Oxygen-phase-state changes in ZnS single crystals annealed in vapors of the constituents. Sov. Phys. J. 1975, 18, 672–676. 119. Morozova, N.K.; Karetnikov, I.A.; Golub, K.V.; Danilevich, N.D.; Lisitsyn, V.M.; Oleshko, V.I. The effect of oxygen on the ZnS electronic energy-band structure. Semiconductors 2005, 39, 485–492. 120. Lepetit, P.; Bente, K.; Doering, T.; Luckhaus, S. Crystal chemistry of Fe-containing sphalerites. Phys. Chem. Miner. 2003, 30, 185–191. 121. Wang, Z.; Wang, F.; Wang, L.; Jia, Y.; Sun, Q. First-principles study of negative thermal expansion in zinc oxide. J. Appl. Phys. 2013, 114, 063508. 122. Muñoz-Aguirre, N.; Martínez-Pérez, L.; Muñoz-Aguirre, S.; Flores-Herrera, L.A.; Vergara Hernández, E.; Zelaya-Angel, O. Luminescent properties of (004) highly oriented cubic zinc blende ZnO thin films. Materials 2019, 12, 3314. 123. He, Y.; Wang, L.; Zhang, L.; Li, M.; Shang, X.; Fang, Y.; Chen, C. Solubility limits and phase structures in epitaxial ZnOS alloy films grown by pulsed laser deposition. J. Alloy Compd. 2012, 534, 81–85. 124. Kramchenkov, A.B.; Kurbatov, D.I.; Zaharets, M.I.; Opanasyuk, A.S. Investigation of oxygen content in zinc sulfide thin films using RBS. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2010, 3, 45–47. (In Russian)