Инд. авторы: Korsakov A.V., Kohn M.J., Perraki M.
Заглавие: Applications of Raman Spectroscopy in Metamorphic Petrology and Tectonics
Библ. ссылка: Korsakov A.V., Kohn M.J., Perraki M. Applications of Raman Spectroscopy in Metamorphic Petrology and Tectonics // ELEMENTS. - 2020. - Vol.16. - Iss. 2. - P.105-110. - ISSN 1811-5209.
Внешние системы: DOI: 10.2138/gselements.16.2.105; РИНЦ: 45211376; WoS: 000544268600006;
Реферат: eng: Raman spectroscopy is widely applied in metamorphic petrology and offers many opportunities for geological and tectonic research. Minimal sample preparation preserves sample integrity and microtextural information, while use with confocal microscopes allows spatial resolution down to the micrometer level. Raman spectroscopy clearly distinguishes mineral polymorphs, providing crucial constraints on metamorphic conditions, particularly ultrahigh-pressure conditions. Raman spectroscopy can also be used to monitor the structure of carbonaceous material in metamorphic rocks. Changes in structure are temperature-sensitive, so Raman spectroscopy of carbonaceous material is widely used for thermometry. Raman spectroscopy can also detect and quantify strain in micro-inclusions, offering new barometers that can be applied to understand metamorphic and tectonic processes without any assumptions about chemical equilibrium.
Ключевые слова: GRAPHITE; DIAMOND; COESITE; CONTINENTAL-CRUST; tectonics; metamorphism; Raman geothermobarometry; Raman hyperspectral mapping; Raman spectroscopy; inclusions; ROCKS;
Издано: 2020
Физ. характеристика: с.105-110
Цитирование: 1. Alvaro M and 10 coauthors (2020) Fossil subduction recorded by quartz from the coesite stability field. Geology 48: 24-28 2. Andò S, Garzanti E (2014) Raman spectroscopy in heavy-mineral studies. In: Scott RA, Smyth HR, Morton AC, Richardson N (eds) Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological Society, London, Special Publications 386, pp 395-412 3. Angel RJ, Mazzucchelli ML, Alvaro M, Nestola F (2017) EosFit-Pinc: a simple GUI for host-inclusion elastic thermobarometry. American Mineralogist 102: 1957-1960 4. Aubry J and 8 coauthors (2018) Frictional heating processes and energy budget during laboratory earthquakes. Geophysical Research Letters 45: 12,274-12,282 5. Beyssac O, Goffé B, Chopin C, Rouzaud JN (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology 20: 859-871 6. Bodnar RJ, Frezzotti ML (2020) Microscale chemistry: Raman analysis of fluid and melt inclusions Elements 16: 93-98 7. Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of Western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology 86: 107-118 8. Chopin C (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letters 212: 1-14 9. Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129: 85-102 10. Ferrero S, Ziemann MA, Angel RJ, O’Brien PJ, Wunder B (2015) Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not evidence for ultrahigh-pressure conditions. Contributions to Mineralogy and Petrology 171: 3, doi: 10.1007/s00410-015-1220-x 11. Gonzalez JP, Thomas JB, Baldwin SL, Alvaro M (2019) Quartz-in-garnet and Ti-in-quartz thermobarometry: methodology and first application to a quartzofeldspathic gneiss from eastern Papua New Guinea. Journal of Metamorphic Geology 37: 1193-1208 12. Hermann J, Rubatto D, Korsakov A, Shatsky VS (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology 141: 66-82 13. Ji S, Wang Q (2011) Interfacial friction-induced pressure and implications for the formation and preservation of intergranular coesite in metamorphic rocks. Journal of Structural Geology 33: 107-113 14. Kohn MJ (2014) “Thermoba-Raman-try”: calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth and Planetary Science Letters 388: 187-196. 15. Korsakov AV, Dieing T, Golovin AV, Toporski J (2011) Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 80: 88-95 16. Luisier C, Baumgartner L, Schmalholz SM, Siron G, Vennemann T (2019) Metamorphic pressure variation in a coherent Alpine nappe challenges lithostatic pressure paradigm. Nature Communications 10, doi: 10.1038/ s41467-019-12727-z 17. Massonne H-J (2005) Ultra high pressure metamorphism. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of Geology. Elsevier Academic Press, pp 533-541 18. Nasdala L, Steger S, Reissner C (2016) Raman study of diamond-based abrasives, and possible artefacts in detecting UHP microdiamond. Lithos 265: 317-327 19. Nibourel L, Herman F, Cox SC, Beyssac O, Lavé J (2015) Provenance analysis using Raman spectroscopy of carbonaceous material: a case study in the Southern Alps of New Zealand. Journal of Geophysical Research: Earth Surface 120: 2056-2079 20. Parkinson CD, Maruyama S, Liou JG, Kohn MJ (2002) Probable prevalence of coesite-stable metamorphism in collisional orogens and a reinterpretation of Barrovian metamorphism. In: Parkinson CD, Katayama I, Liou JG, Maruyama S (eds) The Diamond-Bearing Kokchetav Massif, Kazakhstan: Petrochemistry and Tectonic Evolution of an Unique Ultrahigh-Pressure Metamorphic Terrane. Universal Academy Press, Inc. Tokyo, Japan, pp 447-463 21. Pasteris JD, Beyssac O (2020) Welcome to Raman spectroscopy: successes, challenges, and pitfalls Elements 16: 87-92 22. Perraki M, Korsakov AV, Smith DC, Mposkos E (2009) Raman spectroscopic and microscopic criteria for the distinction of microdiamonds in ultrahigh-pressure metamorphic rocks from diamonds in sample preparation materials. American Mineralogist 94: 546-556 23. Perraki M, Proyer A, Mposkos E, Kaindl R, Hoinkes G (2006) Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth and Planetary Science Letters 241: 672-685 24. Schwartz S and 7 coauthors (2013) Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178: 197-210 25. Shchepetova OV and 5 coauthors (2017) Forbidden mineral assemblage coesite-disordered graphite in diamond-bearing kyanite gneisses (Kokchetav Massif). Journal of Raman Spectroscopy 48: 1606-1612 26. Simoes M and 5 coauthors (2007) Mountain building in Taiwan: a thermokinematic model. Journal of Geophysical Research: Solid Earth 112, doi: 10.1029/2006JB004824 27. Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310: 641-644 28. Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343: 742-746 29. Spear FS, Thomas JB, Hallett BW (2014) Overstepping the garnet isograd: a comparison of QuiG barometry and thermodynamic modeling. Contributions to Mineralogy and Petrology 168, doi: 10.1007/ s00410-014-1059-6 30. Warren CJ, Beaumont C, Jamieson RA (2008) Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth and Planetary Science Letters 267: 129-145 31. Zhong X, Moulas E, Tajčmanová L (2018) Tiny timekeepers witnessing high-rate exhumation processes. Scientific Reports 8, doi: 10.1038/s41598-018-20291-7 32. Zhukov VP, Korsakov AV (2015) Evolution of host-inclusion systems: a visco-elastic model. Journal of Metamorphic Geology 33: 815-828