Инд. авторы: | Grebenev V.N., Medvedev S.B., Nazarenko S.V., Semisalov B.V. |
Заглавие: | Steady states in dual-cascade wave turbulence |
Библ. ссылка: | Grebenev V.N., Medvedev S.B., Nazarenko S.V., Semisalov B.V. Steady states in dual-cascade wave turbulence // Journal of Physics A: Mathematical and Theoretical. - 2020. - Vol.53. - Iss. 36. - Art.365701. - ISSN 1751-8113. - EISSN 1751-8121. |
Внешние системы: | DOI: 10.1088/1751-8121/aba29d; РИНЦ: 45291814; SCOPUS: 2-s2.0-85090909443; WoS: 000565465000001; |
Реферат: | eng: We study stationary solutions in the differential kinetic equation, which was introduced in Dyachenko Aet al(1992PhysicaD5796-160) for description of a local dual cascade wave turbulence. We give a full classification of single-cascade states in which there is a finite flux of only one conserved quantity. Analysis of the steady-state spectrum is based on a phase-space analysis of orbits of the underlying dynamical system. The orbits of the dynamical system demonstrate the blowup behaviour which corresponds to a 'sharp front' where the spectrum vanishes at a finite wave number. The roles of the Kolmogorov-Zakharov and thermodynamic scaling as intermediate asymptotic, as well as of singular solutions, are discussed.
|
Ключевые слова: | steady states; the differential kinetic equation; wave turbulence kinetic equation; dual-cascade wave turbulence; WEAK TURBULENCE; |
Издано: | 2020 |
Физ. характеристика: | 365701 |
Цитирование: | Grebenev V.N.: Ton Duc Thang University, Ho Chi Minh City
Nazarenko S.V.: Institute de Physique de Nice, Universite Côte d'Azur, Ave. Joseph Vallot |