Инд. авторы: Lychagin D.V., Kungulova E.N., Moskvichev E.N., Tomilenko A.A., Tishin P.A.
Заглавие: Microstructure of vein quartz aggregates as an indicator of their deformation history: An example of vein systems from western transbaikalia (russia)
Библ. ссылка: Lychagin D.V., Kungulova E.N., Moskvichev E.N., Tomilenko A.A., Tishin P.A. Microstructure of vein quartz aggregates as an indicator of their deformation history: An example of vein systems from western transbaikalia (russia) // Minerals. - 2020. - Vol.10. - Iss. 10. - Art.865. - ISSN 2075-163X.
Внешние системы: DOI: 10.3390/min10100865; РИНЦ: 45295053; SCOPUS: 2-s2.0-85091817190; WoS: 000582856400001;
Реферат: eng: We investigated the microstructural and crystallographic features of quartz from complex vein systems associated with the development of thrust and shear deformations in Western Transbaikalia using electron back scatter diffraction (EBSD) and optical microscopy. Vein quartz systems were studied to obtain insights on the mechanisms and localization of strains in quartz, in plastic and semibrittle conditions close to the brittle–ductile transition, and their relationship to the processes of regional deformations. Five types of microstructures of vein quartz were distinguished. We established that the preferred mechanisms of deformation of the studied quartz were dislocation glide and creep at average deformation rates and temperatures of 300–400◦ C with subsequent heating and dynamic and static recrystallization. The formation of special boundaries of the Dauphiné twinning type and multiple boundaries with angles of misorientation of 30◦ and 90◦ were noted. The distribution of the selected types in the differently oriented veins was analyzed. The presence of three generations of vein quartz was established. Microstructural and crystallographic features of vein quartz aggregates allow us to mark the territory’s multi-stage development (with the formation of syntectonic and post-deformation quartz). © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Ключевые слова: Vein quartz; Mechanical Dauphiné twinning; Hydrothermal process; EBSD; Microstructure of quartz; Western Transbaikalia;
Издано: 2020
Физ. характеристика: 865, с.1-20
Цитирование: 1. Chi, G.; Guha, J. Microstructural analysis of a subhorizontal gold-quartz vein deposit at Donalda, Abitibi greenstone belt, Canada: Implications for hydrodynamic regime and fluid-structural relationship. Geosci. Front. 2011, 2, 529–538. [CrossRef] 2. Bons, P.D.; Elburg, M.A.; Gomez-Rivas, E. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. 2012, 43, 33–62. [CrossRef] 3. Sibson, R.H. Arterial faults and their role in mineralizing systems. Geosci. Front. 2019, 10, 2093–2100. [CrossRef] 4. Schmatz, J.; Urai, J.L. The interaction of migrating grain boundaries and fluid inclusions in naturally deformed quartz: A case study of a folded and partly recrystallized quartz vein from the Hunsrück Slate, Germany. J. Struct. Geol. 2011, 33, 468–480. [CrossRef] 5. Nermoen, A.; Korsnes, R.I.; Aursjø, O.; Madland, M.V.; Kjørslevik, A.C.; Østensen, G. How stress and temperature conditions affect rock-fluid chemistry and mechanical deformation. Front. Phys. 2016, 4, 1–19. [CrossRef] 6. Kjøll, H.J.; Viola, G.; Menegon, L.; Sørensen, B.E. Brittle–viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions. Solid Earth 2015, 6, 681–699. [CrossRef] 7. Trepmann, C.A.; Seybold, L. Deformation at low and high stress-loading rates. Geosci. Front. 2019, 10, 43–54. [CrossRef] 8. Evans, J.P. Textures, deformation mechanisms, and the role of fluids in the cataclastic deformation of granitic rocks. Geol. Soc. Lond. Spec. Publ. 1990, 54, 29–39. [CrossRef] 9. Bisschop, J.; den Brok, B.; Miletich, R. Brittle deformation of quartz in a diamond anvil cell. J. Struct. Geol. 2005, 27, 943–947. [CrossRef] 10. Doukhan, J.C.; Trépied, L. Plastic deformation of quartz single crystals. Bull. Minéralogie 1985, 108, 97–123. [CrossRef] 11. Rusk, B.; Reed, M.; Krinsley, D.; Bignall, G.; Tsuchiya, N. Natural and synthetic quartz growth and dissolution revealed by scanning electron microscope cathodoluminescence. In Proceedings of the 14th International Conference on the Properties of Water and Steam, Kyoto, Japan, 29 August–3 September 2004. 12. Lagoeiro, L.; Fueten, F. Fluid-assisted grain boundary sliding in bedding-parallel quartz veins deformed under greenschist metamophic grade. Tectonophysics 2008, 446, 42–50. [CrossRef] 13. Fyfe, W.S.; Price, N.J.; Thompson, A.B. Fluids in the Earths Crust, 1st ed.; Elsevier: Cham, The Netherlands, 1978; p. 401. 14. Wangen, M.; Munz, I.A. Formation of quartz veins by local dissolution and transport of silica. Chem. Geol. 2004, 209, 179–192. [CrossRef] 15. Wightman, R.H.; Prior, D.J.; Little, T.A. Quartz veins deformed by diffusion creep accommodated grain boundary sliding during a transient, high strain-rate event in the Southern Alps, New Zealand. J. Struct. Geol. 2006, 28, 902–918. [CrossRef] 16. Passchier, C.W.; Trouw, A.J. Rudolph. Microtectonics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005; p. 366. 17. Ross, J.V.; Mercier, J.-C.C.; Xu, Y. Diffusion creep in the upper mantle: En example from the Tanlu Fault, northeastern China. Tectonophysics 1996, 261, 315–329. [CrossRef] 18. Mauler, A.; Godard, G.; Kunze, K. Crystallographic fabrics of omphacite, rutile and quartz in Vendee eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics 2001, 342, 81–112. 19. Chadek, J. Creep in Metallic Materials; Elsevier: Cham, The Netherlands, 1998; p. 372. 20. White, S. Grain and sub-grain size variations across a mylonite zone. Contrib. Mineral. Petrol. 1979, 70, 193–202. [CrossRef] 21. Stipp, M.; Kunze, K. Dynamic recrystallization near the brittleplastic transition in naturally and experimentally deformed quartz aggregates. Tectonophysics 2008, 448, 77–97. [CrossRef] 22. Stipp, M.; Tullis, J.; Scherwath, M.; Behrmann, J.H. A new perspective on paleopiezometry: Dynamically recrystallized grain size distributions indicate mechanism changes. Geology 2010, 38, 759–762. [CrossRef] 23. Barbosa, P.F.; Lagoeiro, L. Sheared-bedding parallel quartz vein as an indicator of deformation processes. Tectonophysics 2012, 564, 101–113. [CrossRef] 24. Hirth, G.; Tullis, J. Dislocation creep regimes in quartz aggregates. J. Struct. Geol. 1992, 14, 145–159. [CrossRef] 25. Kidder, S.; Hirth, G.; Avouac, J.-P.; Behr, W. The influence of stress history on the grain size and microstructure of experimentally deformed quartzite. J. Struct. Geol. 2016, 83, 194–206. [CrossRef] 26. Urai, J.L.; Means, W.D.; Lister, G.S. Dynamic recrystallization of minerals. Am. Geophys. Union Geophys. Monogr. 1986, 36, 161–199. 27. Stipp, M.; Stunitz, H.; Heilbronner, R.; Schmid, S.M. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250–700 C. J. Struct. Geol. 2002, 24, 1861–1884. [CrossRef] 28. Blenkinsop, T. Deformation Microstructures and Mechanisms in Minerals and Rocks; Kluwer Academic: New York, NY, USA, 2002; p. 150. 29. White, S. Geological significance of recovery and recrystallisation processes in quartz. Tectonophysics 1977, 37, 143–170. [CrossRef] 30. Valcke, S.L.A.; Pennock, G.M.; Drury, M.R.; De Breser, J.H.P. Electron backscatter diffraction as a tool to quantify subgrains in deformed calcite. J. Microsc. 2006, 224, 264–276. [CrossRef] [PubMed] 31. Cross, A.J.; Prior, D.J.; Stipp, M.; Kidder, S. The recrystallized grain size piezometer for quartz: An EBSD-based calibration. Geophys. Res. Lett. 2017, 44, 1–8. [CrossRef] 32. Tullis, J. Quartz: Preferred orientation in rocks produced by Dauphiné twinning. Science 1970, 168, 1342–1344. [CrossRef] 33. Tullis, J.; Tullis, T.E. Preferred orientation produced by mechanical Dauphiné twinning: Thermodynamics and axial experiments. Am. Geophys. Union Geophys. Monogr. 1972, 16, 67–82. 34. Wenk, H.-R.; Yu, R.; Vogel, S.; Vasin, R. Preferred Orientation of Quartz in Metamorphic Rocks from the Bergell Alps. Minerals 2019, 9, 277. [CrossRef] 35. Menegon, L.; Piazolo, S.; Pennacchioni, G. The effect of Dauphiné twinning on plastic strain in quartz. Contrib. Mineral. Petrol. 2011, 161, 635–652. [CrossRef] 36. Heidelbach, F.; Kunze, K.; Wenk, H.-R. Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope. J. Struct. Geol. 2000, 22, 91–104. [CrossRef] 37. Gordienko, I.V. Metallogeny of various geodynamic setting of the Mongolo-Transbaikalian region. Geol. Miner. Resour. Sib. 2014, 3, 7–13. 38. A. P. Karpinsky Russian Geological Research Institute (VSEGEI). Geological Map of the Republic of Buryatia; A. P. Karpinsky Russian Geological Research Institute (VSEGEI): Saint Petersburg, Russia, 2000. (In Russian) 39. Frondel, C.; Newhouse, W.H.; Jarrell, R.F. Secondary Dauphine twinning in quartz. Am. Mineral. 1942, 27, 447–460. 40. Thomas, L.A.; Wooster, W.A. Piezoerescence—The growth of Dauphine twinning in quartz under stress. Proc. Roy. Soc. A 1951, 208, 43–64. 41. Wenk, H.-R.; Barton, N.R.; Bortolotti, M.; Vogel, S.C. Dauphiné twinning and texture memory in polycrystalline quartz. Part 3: Texture memory during phase transformation. Phys. Chem. Miner. 2009, 36, 567–583. [CrossRef] 42. Xu, H.; Heaney, P.J. Memory effects of domain structures during displacive phase transitions: A high-temperature TEM study of quartz and anorthite. Am. Mineral. 1997, 82, 99–108. [CrossRef]