Инд. авторы: Bortnikova S., Gaskova O.L., Yurkevich N., Saeva O., Abrosimova N.
Заглавие: Chemical treatment of highly toxic acid mine drainage at a gold mining site in Southwestern Siberia, Russia
Библ. ссылка: Bortnikova S., Gaskova O.L., Yurkevich N., Saeva O., Abrosimova N. Chemical treatment of highly toxic acid mine drainage at a gold mining site in Southwestern Siberia, Russia // Minerals. - 2020. - Vol.10. - Iss. 10. - Art.867. - ISSN 2075-163X.
Внешние системы: DOI: 10.3390/min10100867; РИНЦ: 45319104; SCOPUS: 2-s2.0-85091853672; WoS: 000585355500001;
Реферат: eng: The critical environmental situation in the region of southwestern Siberia (Komsomolsk settlement, Kemerovo region) is the result of the intentional displacement of mine tailings with high sulfide concentrations. During storage, ponds of acidic water with incredibly high arsenic (up to 4 g/L) and metals formed on the tailings. The application of chemical methods to treat these extremely toxic waters is implemented: milk of lime Ca(OH)2, sodium sulfide Na2S, and sodium hydroxide NaOH. Field experiments were carried out by sequential adding pre-weighed reagents to the solutions with control of the physicochemical parameters and element concentrations for each solution/reagent ratio. In the experiment with Ca(OH)2, the pH increased to neutral values most slowly, which is contrary to the results from the experiment with NaOH. When neutralizing solutions with NaOH, arsenic-containing phases are formed most actively, arsenate chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24·36H2O, a hydrated iron arsenate scorodite, kaatialaite FeAs3O9·8H2O and Mg(H2AsO4)2. A common specificity of the neutralization processes is the rapid precipitation of Fe hydroxides and gypsum, then the reverse release of pollutants under alkaline conditions. The chemistry of the processes is described using thermodynamic modeling. The main species of arsenic in the solutions are iron-arsenate complexes; at the end of the experiments with Ca(OH)2, Na2S, and NaOH, the main species of arsenic is CaAsO4−, the most toxic acid H3AsO3 and AsO43−, respectively. It is recommended that full-scale experiments should use NaOH in the first stages and then Ca(OH)2 for the subsequent neutralization. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Ключевые слова: Sodium hydroxide; Milk of lime; Arsenic-containing tailings; Mine water treatment; Sodium sulfide;
Издано: 2020
Физ. характеристика: 867, с.1-23
Цитирование: 1. Gazea, B.; Adam, K.; Kontopoulos, A. A review of passive systems for the treatment of acid mine drainage. Min. Eng. 1996, 9, 23–42, doi:10.1016/0892-6875(95)00129-8. 2. Lee, G.; Bigham, J.M.; Faure, G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochemistry 2002, 17, 569–581, doi:10.1016/S0883-2927(01)00125-1. 3. Tabelin, C.B.; Hashimoto, A.; Igarashi, T.; Yoneda, T. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Sci. Total Environ. 2014, 473– 474, 244–253, doi:10.1016/j.scitotenv.2013.12.029. 4. Tamoto, S.; Tabelin, C.B.; Igarashi, T.; Ito, M.; Hiroyoshi, N. Short and long term release mechanisms of arsenic, selenium and boron from a tunnel-excavated sedimentary rock under in situ conditions. J. Contam. Hydrol. 2015, 175–176, 60–71, doi:10.1016/j.jconhyd.2015.01.003. 5. Pozo, G.; Pongy, S.; Keller, J.; Ledezma, P.; Freguia, S. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Res. 2017, 126, 411–420, doi:10.1016/j.watres.2017.09.058. 6. Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. 7. Rodriguez, M.; Manuel Baena-Moreno, F.; Arroyo, F.; Zhang, Z. Remediation of acid mine drainage. Springer 2019, 17, 1529–1538, doi:10.1007/s10311-019-00894-w. 8. Tomiyama, S.; Igarashi, T.; Tabelin, C.B.; Tangviroon, P.; Ii, H. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. J. Contam. Hydrol. 2019, 225, 103502, doi:10.1016/j.jconhyd.2019.103502. 9. Santos, K.B. dos; de Almeida, V.O.; Weiler, J.; Schneider, I.A.H. Removal of Pollutants from an AMD from a Coal Mine by Neutralization/Precipitation Followed by “In Vivo” Biosorption Step with the Microalgae Scenedesmus sp. Minerals 2020, 10, 711, doi:10.3390/min10080711. 10. Ríos, C.A.; Williams, C.D.; Roberts, C.L. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J. Hazard. Mater. 2008, 156, 23–35, doi:10.1016/j.jhazmat.2007.11.123. 11. Makarova, M.; Abrosimova, N.; Rybkina, E.; Fiaizullina, R.; Nikolaeva, I. Experimental investigation of sorption of microelements from mine drainage on zeolite and clay. SGEM 2017, 17, 447–455. 12. Gaskova, O.L.; Bukaty, M.B. Sorption of different cations onto clay minerals: Modelling approach with ion exchange and surface complexation. Phys. Chem. Earth Part A/B/C 2008, 33, 1050–1055. doi:10.1016/j.pce.2008.05.014. 13. Saeva, O.P.; Yurkevich, N.V.; Kabannik, V.G.; Kolmogorov, Y.P. Determining the effectiveness of natural reactive barriers for acid drainage neutralization using SR-XRF method. Bull. Russ. Acad. Sci. Phys. 2013, 77, doi:10.3103/S1062873813020305. 14. Farooq, S.H.; Chandrasekharam, D.; Berner, Z.; Norra, S.; Stüben, D. Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta. Water Res. 2010, 44, 5575–5588, doi:10.1016/j.watres.2010.05.057. 15. Kefeni, K.K.; Mamba, B.B. Evaluation of charcoal ash nanoparticles pollutant removal capacity from acid mine drainage rich in iron and sulfate. J. Clean. Prod. 2020, 251, 119720, doi:10.1016/j.jclepro.2019.119720. 16. Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. 17. Sepehrian, H.; Ahmadi, S.J.; Waqif-Husain, S.; Faghihian, H.; Alighanbari, H. Adsorption Studies of Heavy Metal Ions on Mesoporous Aluminosilicate, Novel Cation Exchanger. J. Hazard. Mater. 2010, 176, 252–256, doi:10.1016/j.jhazmat.2009.11.020. 18. Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407– 418, doi:10.1016/j.jenvman.2010.11.011. 19. Abrosimova, N.; Saeva, O.; Bortnikova, S.B.; Edelev, A.V.; Korneeva, T.V.; Yurkevich, N.V. Metals and Metalloids Removal from Mine Water Using Natural and Modified Heulandite. Int. J. Environ. Sci. Dev. 2019, 9, 202–205, doi:10.18178/ijesd.2019.10.7.1173. 20. Kiventerä, J.; Piekkari, K.; Isteri, V.; Ohenoja, K.; Tanskanen, P.; Illikainen, M. Solidification/stabilization of gold mine tailings using calcium sulfoaluminate-belite cement. J. Clean. Prod. 2019, 239, 118008, doi:10.1016/j.jclepro.2019.118008. 21. Wilkin, R.T.; McNeil, M.S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere 2003, 53, 715–725, doi:10.1016/S0045-6535(03)00512-5. 22. Hammarstrom, J.M.; Sibrell, P.L.; Belkin, H.E. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA. Appl. Geochem. 2003, 18, 1705–1721, doi:10.1016/S0883-2927(03)00105-7. 23. Doye, I.; Duchesne, J. Neutralisation of acid mine drainage with alkaline industrial residues: Laboratory investigation using batch-leaching tests. Appl. Geochem. 2003, 18, 1197–1213, doi:10.1016/S0883-2927(02)00246-9. 24. Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. 25. Jung, H.; Shin, T.; Cho, N.; Kim, T.; Kim, J.; Ryu, T.; Song, K.; Hwang, S.; Ryu, B.; Han, B. Thermochemical study for remediation of highly concentrated acid spill: Computational modeling and experimental validation. Chemosphere 2020, 247, No. 126098, doi:10.1016/j.chemosphere.2020.126098. 26. Igarashi, T.; Herrera, P.S.; Uchiyama, H.; Miyamae, H.; Iyatomi, N.; Hashimoto, K.; Tabelin, C.B. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. Sci. Total Environ. 2020, 715, 136877, doi:10.1016/j.scitotenv.2020.136877. 27. Tabelin, C.B.; Corpuz, R.D.; Igarashi, T.; Villacorte-Tabelin, M.; Ito, M.; Hiroyoshi, N. Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions. Chemosphere 2019, 233, 946–953, doi:10.1016/j.chemosphere.2019.06.020. 28. Mulopo, J. Continuous pilot scale assessment of the alkaline barium calcium desalination process for acid mine drainage treatment. J. Environ. Chem. Eng. 2015, 3, 1295–1302, doi:10.1016/j.jece.2014.12.001. 29. Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. 30. Lewis, A.; Van Hille, R. An exploration into the sulphide precipitation method and its effect on metal sulphide removal. Hydrometallurgy 2006, 81, 197–204, doi:10.1016/j.hydromet.2005.12.009. 31. Reis, F.D.; Silva, A.M.; Cunha, E.C.; Leão, V.A. Application of sodium-and biogenic sulfide to the precipitation of nickel in a continuous reactor. Sep. Purif. Technol. 2013, 120, 346–353, doi:10.1016/j.seppur.2013.09.023. 32. Chen, T.; Yan, B.; Lei, C.; Xiao, X. Pollution control and metal resource recovery for acid mine drainage. Hydrometallurgy 2014, 147–148, 112–119, doi:10.1016/j.hydromet.2014.04.024. 33. Silwamba, M.; Ito, M.; Hiroyoshi, N.; Tabelin, C.B.; Fukushima, T.; Park, I.; Jeon, S.; Igarashi, T.; Sato, T.; Nyambe, I.; et al. Detoxification of lead-bearing zinc plant leach residues from Kabwe, Zambia by coupled extraction-cementation method. J. Environ. Chem. Eng. 2020, 8, 104197, doi:10.1016/j.jece.2020.104197. 34. Mondal, P.; Majumder, C.B.; Mohanty, B. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater. 2006, 137, 464–479, doi:10.1016/j.jhazmat.2006.02.023. 35. Asta, M.P.; Cama, J.; Martínez, M.; Giménez, J. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J. Hazard. Mater. 2009, 171, 965–972, doi:10.1016/j.jhazmat.2009.06.097. 36. Jelenová, H.; Majzlan, J.; Amoako, F.Y.; Drahota, P. Geochemical and mineralogical characterization of the arsenic-, iron-, and sulfur-rich mining waste dumps near Kaňk, Czech Republic. Elsevier 2018, doi:10.1016/j.apgeochem.2018.08.029. 37. Nazari, A.M.; Radzinski, R.; Ghahreman, A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 2017, 174, 258–281, doi:10.1016/j.hydromet.2016.10.011. 38. Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706–720. 39. Kim, M.J.; Nriagu, J. Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Total Environ. 2000, 247, 71–79, doi:10.1016/S0048-9697(99)00470-2. 40. Lièvremont, D.; Bertin, P.N.; Lett, M.C. Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 2009, 91, 1229–1237. 41. Twidwell, L.G.; McCloskey, J.; Lee, M.; Saran, J. Arsenic Removal from Mine and Process Waters by Lime/Phosphate Precipitation. In Proceedings of Arsenic Metallurgy: Fundamentals and Applications, Plenary Lecture, TMS, Warrendale, PA, USA, 13–17 February 2005; pp. 71–86. 42. Noël, M.-C.; Demopoulos, G.P. Precipitation of crystalline svabite (Ca5(AsO4)3F) and Svabite/Fluorapatite (Ca5(AsO4)X(PO4)3-XF) Compounds and Evaluation of Their Long-Term Arsenic Fixation Potential. In Proceedings of the Metallurgists Proceedings, Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver, BC, Canada, 11–14 May 2014. 43. Valenzuela, A. Arsenic Management in the Metallurgical industry. Ph.D. Thesis, Université Laval, Québec, QC, Canada, 2000. 44. Filippou, D.; St-Germain, P.; Grammatikopoulos, T. Recovery of metal values from copper—Arsenic minerals and other related resources. Miner. Process. Extr. Metall. Rev. 2007, 28, 247–298, doi:10.1080/08827500601013009. 45. De Klerk, R.J.; Jia, Y.; Daenzer, R.; Gomez, M.A.; Demopoulos, G.P. Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: Process parameter effects on arsenic removal and precipitate quality. Hydrometallurgy 2012, 111–112, 65–72, doi:10.1016/j.hydromet.2011.10.004. 46. Demopous, G. Arsenic Immobilization Research Advances: Past, Present and Future. In Proceedings of Conference of Metallurgists (COM), Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver, BC, Canada, 28 September–1 October 2014. 47. Duquesne, K.; Lebrun, S.; Casiot, C.; Bruneel, O.; Personné, J.C.; Leblanc, M.; Elbaz-Poulichet, F.; Morin, G.; Bonnefoy, V. Immobilization of Arsenite and Ferric Iron by Acidithiobacillus ferrooxidans and Its Relevance to Acid Mine Drainage. Appl. Environ. Microbiol. 2003, 69, 6165–6173, doi:10.1128/AEM.69.10.6165-6173.2003. 48. Alam, R.; McPhedran, K. Applications of biological sulfate reduction for remediation of arsenic—A review. Chemosphere 2019, 222, 932–944. 49. Yun, H.; Jang, M.; Shin, W.; Choi, J. Remediation of arsenic-contaminated soils via waste-reclaimed treatment agents: Batch and field studies. Miner. Eng. 2018, 127, 90–97, doi.org/10.1016/j.mineng.2018.07.015. 50. Gugushe, A.S.; Nqombolo, A.; Nomngongo, P.N. Application of Response Surface Methodology and Desirability Function in the Optimization of Adsorptive Remediation of Arsenic from Acid Mine Drainage Using Magnetic Nanocomposite: Equilibrium Studies and Application to Real Samples. Molecules 2019, 24, 1792, doi:10.3390/molecules24091792. 51. Yuan, Z.; Zhang, G.; Ma, X.; Yu, L.; Wang, X.; Wang, S.; Jia, Y. Rapid abiotic As removal from As-rich acid mine drainage: Effect of pH, Fe/As molar ratio, oxygen, temperature, initial As concentration and neutralization reagent. Chem. Eng. J. 2019, 378, 122156, doi:10.1016/j.cej.2019.122156. 52. Houngaloune, S.; Kawaai, T.; Hiroyoshi, N.; Ito, M. Study on schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions. Hydrometallurgy 2014, 147–148, 30–40, doi:10.1016/j.hydromet.2014.04.001. 53. Okibe, N.; Koga, M.; Morishita, S.; Tanaka, M.; Heguri, S.; Asano, S.; Sasaki, K.; Hirajima, T. Microbial formation of crystalline scorodite for treatment of As(III)-bearing copper refinery process solution using Acidianus brierleyi. Hydrometallurgy 2014, 143, 34–41, doi:10.1016/j.hydromet.2014.01.008. 54. Jahromi, F.G.; Ghahreman, A. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process. J. Hazard. Mater. 2018, 360, 631–638, doi:10.1016/j.jhazmat.2018.08.019. 55. Tabelin, C.; Sasaki, A.; Igarashi, T.; Tomiyama, S.; Villacorte-Tabelin, M.; Ito, M.; Hiroyoshi, N. Prediction of acid mine drainage formation and zinc migration in the tailings dam of a closed mine, and possible countermeasures. MATEC Web Conf. 2019, 268, 06003, doi:10.1051/matecconf/201926806003. 56. Tabelin, C.B.; Silwamba, M.; Paglinawan, F.C.; Mondejar, A.J.S.; Duc, H.G.; Resabal, V.J.; Opiso, E.M.; Igarashi, T.; Tomiyama, S.; Ito, M.; et al. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere 2020, 260, 127574, doi:10.1016/j.chemosphere.2020.127574. 57. Zhang, D.; Yuan, Z.; Wang, S.; Jia, Y.; Demopoulos, G.P. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry. J. Hazard. Mater. 2015, 300, 272–280, doi:10.1016/j.jhazmat.2015.07.015. 58. Majzlan, J.; Drahota, P.; Filippi, M. Parageneses and crystal chemistry of arsenic minerals. Rev. Mineral. Geochemistry 2014, 79, 17–184, doi:10.2138/rmg.2014.79.2. 59. Bortnikova, S.; Olenchenko, V.; Gaskova, O.; Yurkevich, N.; Abrosimova, N.; Shevko, E.; Edelev, A.; Korneeva, T.; Provornaya, I.; Eder, L. Characterization of a gold extraction plant environment in assessing the hazardous nature of accumulated wastes (Kemerovo region, Russia). Appl. Geochem. 2018, 93, 145–157, doi:10.1016/j.apgeochem.2018.04.009. 60. Horowitz, A.; Demas, C.; Fitzgerald, K.; Miller, T. US Geological Survey Protocol for the Collection and Processing of Surface-Water Samples for the Subsequent Determination of Inorganic Constituents in Filtered Water (No. 94-539); US Geological Survey; USGS Earth Science and Information Center, Open-File Reports Section: Reston, VA, USA, 1994. 61. Shvarov, Yu.V. HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by Windows. Geochem. Inter. 2008, 46, 834–839. 62. Garrels, R.; Christ, C. Solutions, Minerals, and Equilibria; Harper and Row: New York, NY, USA, 1965. 63. Tabelin, C.B.; Corpuz, R.D.; Igarashi, T.; Villacorte-Tabelin, M.; Alorro, R.D.; Yoo, K.; Raval, S.; Ito, M.; Hiroyoshi, N. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. J. Hazard. Mater. 2020, 399, 122844, doi:10.1016/j.jhazmat.2020.122844. 64. Bortnikova, S.; Bessonova, E.; Gaskova, O. Geochemistry of arsenic and metals in stored tailings of a Co-Ni arsenide-ore, Khovu-Aksy area, Russia. Appl. Geochem. 2012, 27, 2238–2250, doi:10.1016/j.apgeochem.2012.02.033. 65. Gaskova, O.L.; Bessonova, E.P.; Bortnikova, S.B. Leaching Experiments on Trace Element Release from the Arsenic-Bearing Tailings of Khovu-Aksy (Tuva Republic, Russia). Appl. Geochem. 2003, 18, 1361–1371. 66. Andreev, S.Yu.; Kochergin, A.C.; Malutina, T.V.; Alekseeva, T.V. The Use of Precipitating Agents in the Wastewater Treatment of Galvanic Plants; PH PEGAS: Pensa, Russia, 2016; Volume 116. (In Russian). 67. Gas’kova, O.L.; Bortnikova, S.B.; Airiyants, A.A.; Kolmogorov, Y.P.; Pashkov, M.V. Geochemical features of an anthropogenic impoundment with cyanidation wastes of gold-arsenopyrite-quartz ores. Geochem. Int. 2000, 38, 281–291.