Цитирование: | 1. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments: Technical Reports Series 2010. IAEA, Vienna, 472. Available online: https://www.iaea.org/publications/8201/handbook-of-parameter-values-for-the-prediction-of-radionuclide-transfer-in-terrestrial-and-freshwater-environments (accessed on 3 October 2020).
2. Abramov, A.A.; Dorofeev, A.N.; Deryabin, S.A. Development of USS RW in the Framework of Federal Targeted Program of Nuclear and Radiation Safety Assurance. Radioact. Waste 2019, 1, 6-20.
3. Danilovich, A.S.; Pavlenko, V.l.; Potapov, V.N.; Semenov, S.G.; Chesnokov, A.V.; Shisha, A. DTechnologies of radwaste management at a decommissioning of the MR and RFT research reactors. Radioact. Waste 2018, 2, 63-72.
4. Hosseini, A.; Thorring, H.; Brown, J.E.; Saxén, R.; Ilus, E. Transfer of radionuclides in aquatic ecosystems-default concentration ratios for aquatic biota in the Erica Tool. J. Environ. Radioact. 2018, 99, 1408-1429.
5. Rahn, F.J.; Adamantiades, A.G.; Kenton, J.E.; Braun, C. A Guide to Nuclear Power Technology: A Resource for Decision Making; Wiley-Interscience Publication John Wiley and Sons: New York, NY, USA, 1984.
6. Choppin, G.; Liljenzin, J.O.; Rydberg, J.; Ekberg, C. Radiochemistry and Nuclear Chemistry; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2013.
7. Gaskova, O.L.; Boguslavskiy, A.E.; Shemelina, O.V. Uranium release from contaminated sludge materials and uptake by subsurface sediments: Experimental study and thermodynamic modeling. Appl. Geochem. 2015, 55, 152-159.
8. Mergelov, N.S.; Shorkunov, I.G.; Targulian, V.O.; Dolgikh, A.V.; Abrosimov, K.N.; Zazovskaya, E.P.; Goryachkin, S.V. Soil-like patterns inside the rocks: Structure, genesis, and research techniques. In Biogenic-Abiogenic Interactions in Natural and Anthropogenic Systems; Frank-Kamenetskaya, O.V., Panova, E.G., Vlasov, D.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 205-222.
9. Danilov, V.V.; Istomin, A.D.; Noskov, M.D. Multilevel digital model of sedimentary layer of the Siberian Chemical Combine area. Tomsk State Univ. Bull. 2008, 329, 256-261.
10. Gavrilov, P.M.; Antonenko, M.V.; Druz, D.V.; Chubreev, D.O. Monitoring the Points of Special RAW Placement at FSUE "MCC". Radioact. Waste 2018, 3, 50-59.
11. Orlova, N.A.; Kropotkin, M.P.; Il'ina, O.A.; Prasolov, A.A.; Krupskaya, V.V. Geoecological risks arising from the disposal of toxic chemical and radioactive waste in Kolomenskoe (Moscow) and the options for territory rehabilitation. Environ. Geosci. 2020, 2, 57-63.
12. Krupskaya, V.V.; Zakusin, S.V.; Zhuchlistov, A.P.; Dorzhieva, O.V.; Sudin, V.V.; Kruchkova, l.U.; Zubkov, A.A. Newly formed smectite as an indicator for geological environment transformation under the high-reactive solutions, which accompany liquid radioactive wastes. Geoecology. Engineering geology. Hydrogeol. Geocryol. 2016, 5, 412-419.
13. Environmental Audits of the Angarsk Electrolysis Chemical Combine 2007; Limnological Institute SB RAS: Irkutsk, Russia. 2007. Available online: https://www.aiche.org/resources/proceedings/aiche-annual-meeting/2007 (accessed on 3 October 2020).
14. Boguslavskiy, A.E.; Gaskova, O.L.; Shemelina, O.V. Uranium Migration in the Ground Water of the Region of Sludge Dumps of the Angarsk Electrolysis Chemical Combine. Chem. Sustain. Dev. 2012, 20, 465-478.
15. Matveeva, I.V.; Shenkman, B.M.; Sakharov, N.V. Evaluation of Filtration Properties of the Containing Rocks and Complex Hydrogeological Assessment of Slurry Field AECC to Justify the Regulation of Hydrogeological Monitoring; Irkutsk State Technical University, Center of Geological and Ecological Researches: Irkutsk, Russia, 2009.
16. Grebenshchikova, V.I.; Kitaev, N.A.; Lustenberg, E.E.; Medvedev, V.I.; Lomonosov, I.S.; Karchevsky, A.N. Radioactive Elements Scattering in the Environment in Pribaikalia (Communication 1. Uranium). Contemp. Probl. Ecol. 2009, 1, 17-28.
17. Shemelina, O.V.; Boguslavskiy, A.E.; Yurkevich, N.V. Determination of soil immobilization characteristics around influence of the fuel and nuclear cycle plant on an example AECC radioactive waste storages. In Proceedings of the VII International Scientific-Practical Conference: Heavy Metals and Radionuclides in the Environment, Semey, Kazakhstan, 4-8 October 2012; pp. 373-380.
18. Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997.
19. Post, J.E.; Bish, D.L. Rietveld refinement of crystal structures using powder X-ray diffraction data. Rev. Mineral. Geochem. 1989, 20, 277-308.
20. Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573-1580.
21. Shemelina, O.V.; Boguslavskiy, A.E.; Kolmogorov, Y.P. Measuring the amount of radioactive elements in slime pits and enveloping soils. Bull. Russ. Acad. Sci. Phys. 2013, 77, 199-202.
22. Russell, J.D.; Fraser, A.R. Infrared methods. In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Chapter 2; Wilson, M.J., Ed.; Chapman & Hall: London, UK, 1994; pp. 11-67.
23. Madejova, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Infrared and Raman Spectroscopies of Clay Minerals; Chapter 5; Gates, W.P., Kloprogge, J.T., Madejova, J., Bergaya, F., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 8.
24. Madejova, J.; Komadel, P. Information available from infrared spectra of the fine fractions of bentonites. In The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides; CMS Workshop Lectures; Kloprogge, J.T., Ed.; The Clay Mineral Society: Aurora, CO, USA, 2005; Volume 3.
25. Krupskaya, V.; Zakusin, S.; Dorzhieva, O.; Boguslavskiy, A.; Shemelina, O.; Chernov, M.; Zubkov, A., II. International symposium "Clays and ceramics". Book of abstracts. Transformation of Clay Minerals Due to Technogenic Processes Associated with the Disposal of Radioactive Waste; University of Latvia: Riga, Latvia, 2018; pp. 67-68.
|