Инд. авторы: Krupskaya V., Boguslavskiy A., Zakusin S., Shemelina O.V., Chernov M., Dorzhieva O., Morozov I.
Заглавие: The influence of liquid low-radioactive waste repositories on the mineral composition of surrounding soils
Библ. ссылка: Krupskaya V., Boguslavskiy A., Zakusin S., Shemelina O.V., Chernov M., Dorzhieva O., Morozov I. The influence of liquid low-radioactive waste repositories on the mineral composition of surrounding soils // Sustainability (Switzerland). - 2020. - Vol.12. - Iss. 19. - Art.8259. - ISSN 2071-1050.
Внешние системы: DOI: 10.3390/su12198259; РИНЦ: 45224558; SCOPUS: 2-s2.0-85092652111; WoS: 000586476000001;
Реферат: eng: Clay minerals may transform in various systems under the influence of geological, biological, or technogenic processes. The most active to the geological environment are technogenic and biochemical processes that, in a relatively short time, can cause transformation of the rocks' composition and structure and formation of new minerals, especially clay minerals. Isolation of radioactive waste is a complex technological problem. This work considers the influence of alkaline solutions involved in the radioactive waste (RW) disposal process. In the Russian Federation, due to historical reasons, radioactive waste has accumulated in various types of repositories and temporary storages. All these facilities are included in the federal decommissioning program. Solid radioactive wastes in cement slurries at the landfill site of the Angara Electrolysis Chemical Combine are buried in sandstones and currently suffer the influence of a highly alkaline and highly saline groundwater storage area, which leads to a considerable transformation of the sandstones. This influence results in the formation of peculiar 'technogenic' illites that have smectite morphology but illite structure which was confirmed by modeling of X-ray diffraction (XRD) patterns. The described transformations will lead to the increase of porosity and permeability of the sandstones. The research results can be used in assessing the potential contamination of the areas adjacent to the disposal site and in planning the decommissioning measures of this facility. © 2020 by the authors.
Ключевые слова: Waste facilities; Clay minerals transformations; Low-radioactive waste; Highly concentrated solutions;
Издано: 2020
Физ. характеристика: 8259
Цитирование: 1. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments: Technical Reports Series 2010. IAEA, Vienna, 472. Available online: https://www.iaea.org/publications/8201/handbook-of-parameter-values-for-the-prediction-of-radionuclide-transfer-in-terrestrial-and-freshwater-environments (accessed on 3 October 2020). 2. Abramov, A.A.; Dorofeev, A.N.; Deryabin, S.A. Development of USS RW in the Framework of Federal Targeted Program of Nuclear and Radiation Safety Assurance. Radioact. Waste 2019, 1, 6-20. 3. Danilovich, A.S.; Pavlenko, V.l.; Potapov, V.N.; Semenov, S.G.; Chesnokov, A.V.; Shisha, A. DTechnologies of radwaste management at a decommissioning of the MR and RFT research reactors. Radioact. Waste 2018, 2, 63-72. 4. Hosseini, A.; Thorring, H.; Brown, J.E.; Saxén, R.; Ilus, E. Transfer of radionuclides in aquatic ecosystems-default concentration ratios for aquatic biota in the Erica Tool. J. Environ. Radioact. 2018, 99, 1408-1429. 5. Rahn, F.J.; Adamantiades, A.G.; Kenton, J.E.; Braun, C. A Guide to Nuclear Power Technology: A Resource for Decision Making; Wiley-Interscience Publication John Wiley and Sons: New York, NY, USA, 1984. 6. Choppin, G.; Liljenzin, J.O.; Rydberg, J.; Ekberg, C. Radiochemistry and Nuclear Chemistry; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2013. 7. Gaskova, O.L.; Boguslavskiy, A.E.; Shemelina, O.V. Uranium release from contaminated sludge materials and uptake by subsurface sediments: Experimental study and thermodynamic modeling. Appl. Geochem. 2015, 55, 152-159. 8. Mergelov, N.S.; Shorkunov, I.G.; Targulian, V.O.; Dolgikh, A.V.; Abrosimov, K.N.; Zazovskaya, E.P.; Goryachkin, S.V. Soil-like patterns inside the rocks: Structure, genesis, and research techniques. In Biogenic-Abiogenic Interactions in Natural and Anthropogenic Systems; Frank-Kamenetskaya, O.V., Panova, E.G., Vlasov, D.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 205-222. 9. Danilov, V.V.; Istomin, A.D.; Noskov, M.D. Multilevel digital model of sedimentary layer of the Siberian Chemical Combine area. Tomsk State Univ. Bull. 2008, 329, 256-261. 10. Gavrilov, P.M.; Antonenko, M.V.; Druz, D.V.; Chubreev, D.O. Monitoring the Points of Special RAW Placement at FSUE "MCC". Radioact. Waste 2018, 3, 50-59. 11. Orlova, N.A.; Kropotkin, M.P.; Il'ina, O.A.; Prasolov, A.A.; Krupskaya, V.V. Geoecological risks arising from the disposal of toxic chemical and radioactive waste in Kolomenskoe (Moscow) and the options for territory rehabilitation. Environ. Geosci. 2020, 2, 57-63. 12. Krupskaya, V.V.; Zakusin, S.V.; Zhuchlistov, A.P.; Dorzhieva, O.V.; Sudin, V.V.; Kruchkova, l.U.; Zubkov, A.A. Newly formed smectite as an indicator for geological environment transformation under the high-reactive solutions, which accompany liquid radioactive wastes. Geoecology. Engineering geology. Hydrogeol. Geocryol. 2016, 5, 412-419. 13. Environmental Audits of the Angarsk Electrolysis Chemical Combine 2007; Limnological Institute SB RAS: Irkutsk, Russia. 2007. Available online: https://www.aiche.org/resources/proceedings/aiche-annual-meeting/2007 (accessed on 3 October 2020). 14. Boguslavskiy, A.E.; Gaskova, O.L.; Shemelina, O.V. Uranium Migration in the Ground Water of the Region of Sludge Dumps of the Angarsk Electrolysis Chemical Combine. Chem. Sustain. Dev. 2012, 20, 465-478. 15. Matveeva, I.V.; Shenkman, B.M.; Sakharov, N.V. Evaluation of Filtration Properties of the Containing Rocks and Complex Hydrogeological Assessment of Slurry Field AECC to Justify the Regulation of Hydrogeological Monitoring; Irkutsk State Technical University, Center of Geological and Ecological Researches: Irkutsk, Russia, 2009. 16. Grebenshchikova, V.I.; Kitaev, N.A.; Lustenberg, E.E.; Medvedev, V.I.; Lomonosov, I.S.; Karchevsky, A.N. Radioactive Elements Scattering in the Environment in Pribaikalia (Communication 1. Uranium). Contemp. Probl. Ecol. 2009, 1, 17-28. 17. Shemelina, O.V.; Boguslavskiy, A.E.; Yurkevich, N.V. Determination of soil immobilization characteristics around influence of the fuel and nuclear cycle plant on an example AECC radioactive waste storages. In Proceedings of the VII International Scientific-Practical Conference: Heavy Metals and Radionuclides in the Environment, Semey, Kazakhstan, 4-8 October 2012; pp. 373-380. 18. Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997. 19. Post, J.E.; Bish, D.L. Rietveld refinement of crystal structures using powder X-ray diffraction data. Rev. Mineral. Geochem. 1989, 20, 277-308. 20. Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573-1580. 21. Shemelina, O.V.; Boguslavskiy, A.E.; Kolmogorov, Y.P. Measuring the amount of radioactive elements in slime pits and enveloping soils. Bull. Russ. Acad. Sci. Phys. 2013, 77, 199-202. 22. Russell, J.D.; Fraser, A.R. Infrared methods. In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Chapter 2; Wilson, M.J., Ed.; Chapman & Hall: London, UK, 1994; pp. 11-67. 23. Madejova, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Infrared and Raman Spectroscopies of Clay Minerals; Chapter 5; Gates, W.P., Kloprogge, J.T., Madejova, J., Bergaya, F., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 8. 24. Madejova, J.; Komadel, P. Information available from infrared spectra of the fine fractions of bentonites. In The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides; CMS Workshop Lectures; Kloprogge, J.T., Ed.; The Clay Mineral Society: Aurora, CO, USA, 2005; Volume 3. 25. Krupskaya, V.; Zakusin, S.; Dorzhieva, O.; Boguslavskiy, A.; Shemelina, O.; Chernov, M.; Zubkov, A., II. International symposium "Clays and ceramics". Book of abstracts. Transformation of Clay Minerals Due to Technogenic Processes Associated with the Disposal of Radioactive Waste; University of Latvia: Riga, Latvia, 2018; pp. 67-68.