Инд. авторы: Okotrub A.V., Chernov A.I., Lavrov A.N., Gurova O.A., Shubin Y.V., Palyanov Y.N., Borzdov Y.M., Zvezdin A.K., Lähderanta E., Bulusheva L.G., Sedelnikova O.V.
Заглавие: Magnetic Properties of 1D Iron–Sulfur Compounds Formed Inside Single-Walled Carbon Nanotubes
Библ. ссылка: Okotrub A.V., Chernov A.I., Lavrov A.N., Gurova O.A., Shubin Y.V., Palyanov Y.N., Borzdov Y.M., Zvezdin A.K., Lähderanta E., Bulusheva L.G., Sedelnikova O.V. Magnetic Properties of 1D Iron–Sulfur Compounds Formed Inside Single-Walled Carbon Nanotubes // Physica Status Solidi - Rapid Research Letters. - 2020. - ISSN 1862-6254.
Внешние системы: DOI: 10.1002/pssr.202000291; РИНЦ: 45399520; SCOPUS: 2-s2.0-85089595770; WoS: 000560357900001;
Реферат: eng: Herein, the filling of single-walled carbon nanotubes (SWCNTs) with sulfur is performed, and the magnetic properties of the formed nanomaterials are studied. Encapsulation of sulfur species results in the appearance of a specific magnetic ordering in the system due to the formation of nanoscopic grains composed of sulfur and residual catalytic Fe nanoparticles contained in the SWCNTs. The magnetic character of the obtained 1D nanostructures is studied using superconducting quantum interference device (SQUID) magnetometer and a sequential ferromagnetic–antiferromagnetic ordering in the material is revealed. Magnetic and optical properties are strongly dependent on the synthesis protocols. A significant Raman intensity increase related to the encapsulated nanostructures is obtained when filling is performed at high-pressure high-temperature conditions. Simultaneously, the magnetic susceptibility gets strongly reduced for high-pressure filling, which is related to the escape of iron particles from the nanotube interior, and the magnetic properties of the material are governed by a weak ferromagnetic ordering of Fe–S structures remained inside SWCNTs. Sulfur encapsulation provides the new route for controlling the magnetic properties in 1D nanomaterials that pave the way for advanced magneto-optical applications. © 2020 Wiley-VCH GmbH
Ключевые слова: single-walled carbon nanotube encapsulation; single-walled carbon nanotubes; Single-walled carbon nanotubes (SWCN); Weak ferromagnetic ordering; Single-walled carbon nanotube (SWCNTs); Magneto-optical applications; Magnetic character; Magnetic and optical properties; High pressure high temperature; Antiferromagnetic orderings; 1-D nanostructures; Sulfur compounds; SQUIDs; Quantum interference devices; Optical properties; Nanotubes; Nanomagnetics; Magnetic susceptibility; Iron; High pressure engineering; Filling; Ferromagnetism; Ferromagnetic materials; Antiferromagnetism; sulfur compounds; antiferromagnetism;
Издано: 2020
Цитирование: 1. E. Rafiee, M. Khodayari, Res. Chem. Intermed. 2016, 42, 3523. 2. M. del Carmen Giménez-López, F. Moro, A. La Torre, C. J. Gómez-García, P. D. Brown, J. van Slageren, A. N. Khlobystov, Nat. Commun. 2011, 2, 407. 3. G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J.-C. Bradley, K. G. Kornev, Nano Lett. 2005, 5, 879. 4. A. N. Khlobystov, ACS Nano 2011, 5, 9306. 5. D. V. Rybkovskiy, A. Impellizzeri, E. D. Obraztsova, C. P. Ewels, Carbon 2019, 142, 123. 6. A. Chernov, M. Havlicek, W. Jantsch, M. H. Rümmeli, A. Bachmatiuk, K. Yanagi, H. Peterlik, H. Kataura, F. Sauerzopf, R. Resel, F. Simon, H. Kuzmany, Phys. Status Solidi B 2012, 249, 2323. 7. A. I. Chernov, P.V. Fedotov, H. E. Lim, Y. Miyata, Z. Liu, K. Sato, K. Suenaga, H. Shinohara, E. D. Obraztsova, Nanoscale 2018, 10, 2936. 8. R. K. Rana, X. N. Xu, Y. Yeshurun, A. Gedanken, J. Phys. Chem. B 2002, 106, 4079. 9. R. C. Che, L.-M. Peng, X. F. Duan, Q. Chen, X. L. Liang, Adv. Mater. 2004, 16, 401. 10. X. X. Zhang, G. H. Wen, S. Huang, L. Dai, R. Gao, Z. L. Wang, J. Magn. Magn. Mater. 2001, 231, 9. 11. J.-S. Lee, Y.-J. Song, H.-S. Hsu, C.-R. Lin, J.-Y. Huang, J. Chen, J. Alloys Compd. 2019, 790, 716. 12. R. Nakanishi, J. Satoh, K. Katoh, H. Zhang, B. K. Breedlove, M. Nishijima, Y. Nakanishi, H. Omachi, H. Shinohara, M. Yamashita, J. Am. Chem. Soc. 2018, 140, 10955. 13. K. Katoh, S. Yamashita, N. Yasuda, Y. Kitagawa, B. K. Breedlove, Y. Nakazawa, M. Yamashita, Angew. Chemie Int. Ed. 2018, 57, 9262. 14. J.-P. Cleuziou, W. Wernsdorfer, T. Ondarçuhu, M. Monthioux, ACS Nano 2011, 5, 2348. 15. A. L. Danilyuk, A.V. Kukharev, C. S. Cojocaru, F. Le Normand, S. L. Prischepa, Carbon 2018, 139, 1104. 16. R. S. Iskhakov, S. V Komogortsev, A. D. Balaev, A. V. Okotrub, A. G. Kudashov, V. L. Kuznetsov, Y. V. Butenko, J. Exp. Theor. Phys. Lett. 2003, 78, 236. 17. X. Qi, J. Xu, W. Zhong, C. Au, Y. Du, Diam. Relat. Mater. 2014, 45, 12. 18. V. S. Zagainova, T. L. Makarova, A. V. Okotrub, A. G. Kurenya, S.V. Komogortsev, L. G. Bulusheva, Fullerenes Nanotubes Carbon Nanostruct. 2010, 18, 569. 19. H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, T. Pichler, Sci. Rep. 2015, 5, 15033. 20. M. He, H. Jiang, I. Kauppi, P.V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca, J. B. Wagner, T. W. Hansen, J. Sainio, E. Sairanen, J. Lehtonen, E. I. Kauppinen, J. Mater. Chem. A 2014, 2, 5883. 21. O. A. Gurova, V. E. Arhipov, V. O. Koroteev, T. Y. Guselnikova, I. P. Asanov, O.V. Sedelnikova, A. V. Okotrub, Phys. Status Solidi B 2019, 256, 1800742. 22. A. Briones-Leon, P. Ayala, X. Liu, K. Yanagi, E. Weschke, M. Eisterer, H. Jiang, H. Kataura, T. Pichler, H. Shiozawa, Phys. Rev. B 2013, 87, 195435. 23. M. Havlicek, A. Chernov, W. Jantsch, Z. Wilamowski, K. Yanagi, H. Kataura, M. H. Rümmeli, H. Malissa, H. Kuzmany, Phys. Status Solidi B 2012, 249, 2562. 24. M. Havlicek, W. Jantsch, Z. Wilamowski, K. Yanagi, H. Kataura, M. H. Rümmeli, H. Malissa, A. Tyryshkin, S. Lyon, A. Chernov, H. Kuzmany, Phys. Rev. B 2012, 86, 45402. 25. T. Fujimori, A. Morelos-Gómez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S. Young Hong, Y. Chul Choi, D. Tománek, K. Kaneko, Nat. Commun. 2013, 4, 2162. 26. C. Fu, M. B. Oviedo, Y. Zhu, A. von Wald Cresce, K. Xu, G. Li, M. E. Itkis, R. C. Haddon, M. Chi, Y. Han, B. M. Wong, J. Guo, ACS Nano 2018, 12, 9775. 27. M. Cabán-Acevedo, M. S. Faber, Y. Tan, R. J. Hamers, S. Jin, Nano Lett. 2012, 12, 1977. 28. Y. Zhu, X. Fan, L. Suo, C. Luo, T. Gao, C. Wang, ACS Nano 2016, 10, 1529. 29. L. Xu, Y. Hu, H. Zhang, H. Jiang, C. Li, ACS Sustain. Chem. Eng. 2016, 4, 4251. 30. M. Fan, L. Zhang, K. Li, J. Liu, Y. Zheng, L. Zhang, S. Song, Z.-A. Qiao, ACS Appl. Nano Mater. 2019, 2, 3889. 31. P. Burgardt, M. S. Seehra, Solid State Commun. 1977, 22, 153. 32. K. Adachi, K. Sato, J. Appl. Phys. 1968, 39, 1343. 33. M. Wang, M. Yi, B. A. Frandsen, J. Yin, H. Sun, Z. Xu, H. Cao, E. Bourret-Courchesne, J. W. Lynn, R. J. Birgeneau, Phys. Rev. Mater. 2020, 4, 34802. 34. A.V. Powell, P. Vaqueiro, K. S. Knight, L. C. Chapon, R. D. Sánchez, Phys. Rev. B 2004, 70, 14415. 35. A. P. Roberts, Earth Planet. Sci. Lett. 1995, 134, 227. 36. M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, M. Law, Energy Environ. Sci. 2014, 7, 1974. 37. A. T. Apostolov, I. N. Apostolova, S. Trimper, J. M. Wesselinowa, Phys. Status Solidi B 2019, 256, 1900201. 38. J. Xia, J. Jiao, B. Dai, W. Qiu, S. He, W. Qiu, P. Shen, L. Chen, RSC Adv. 2013, 3, 6132. 39. O. V. Sedelnikova, O. A. Gurova, A. A. Makarova, A. D. Fedorenko, A. D. Nikolenko, P. E. Plyusnin, R. Arenal, L. G. Bulusheva, A. V. Okotrub, Nanomaterials 2020, 10, 818. 40. S. A. Kissin, S. D. Scott, Econ. Geol. 1982, 77, 1739. 41. G. Li, C. Fu, M. B. Oviedo, M. Chen, X. Tian, E. Bekyarova, M. E. Itkis, B. M. Wong, J. Guo, R. C. Haddon, J. Am. Chem. Soc. 2016, 138, 40. 42. A. Baum, A. Milosavljević, N. Lazarević, M. M. Radonjić, B. Nikolić, M. Mitschek, Z. I. Maranloo, M. Šćepanović, M. Grujić-Brojčin, N. Stojilović, M. Opel, A. Wang, C. Petrovic, Z. V. Popović, R. Hackl, Phys. Rev. B 2018, 97, 54306. 43. A. Boughriet, R. S. Figueiredo, J. Laureyns, P. Recourt, J. Chem. Soc. Faraday Trans. 1997, 93, 3209. 44. H. Vogt, T. Chattopadhyay, H. J. Stolz, J. Phys. Chem. Solids 1983, 44, 869. 45. W. Cui, T. Saito, P. Ayala, T. Pichler, L. Shi, Nanoscale 2019, 11, 15253. 46. E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M. H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R. J. Kalenczuk, T. Pichler, S. R. P. Silva, Chem. Phys. Lett. 2006, 421, 129. 47. C. B. Rong, D. Li, V. Nandwana, N. Poudyal, Y. Ding, Z. L. Wang, H. Zeng, J. P. Liu, Adv. Mater. 2006, 18, 2984. 48. R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, D. M. Tricker, Phys. Rev. Lett. 1999, 83, 1042. 49. C. F. Gélvez, E. J. Patiño, J. Phys.: Condens. Matter 2019, 31, 13LT01. 50. T. W. Chamberlain, J. Biskupek, G. A. Rance, A. Chuvilin, T. J. Alexander, E. Bichoutskaia, U. Kaiser, A. N. Khlobystov, ACS Nano 2012, 6, 3943. 51. K. Miyaura, Y. Miyata, B. Thendie, K. Yanagi, R. Kitaura, Y. Yamamoto, S. Arai, H. Kataura, H. Shinohara, Sci. Rep. 2018, 8, 8098. 52. I. V. Anoshkin, A. V. Talyzin, A. G. Nasibulin, A.V. Krasheninnikov, H. Jiang, R. M. Nieminen, E. I. Kauppinen, ChemPhysChem 2014, 15, 1660. 53. A. I. Chernov, P. V. Fedotov, I. V. Anoshkin, A. G. Nasibulin, E. I. Kauppinen, V. L. Kuznetsov, E. D. Obraztsova, Phys. Status Solidi B 2014, 251, 2372. 54. A. Chuvilin, E. Bichoutskaia, M. C. Gimenez-Lopez, T. W. Chamberlain, G. A. Rance, N. Kuganathan, J. Biskupek, U. Kaiser, A. N. Khlobystov, Nat. Mater. 2011, 10, 687. 55. S. Bedanta, T. Eimüller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, P. P. Freitas, Phys. Rev. Lett. 2007, 98, 176601. 56. X. Zhang, T. Scott, T. Socha, D. Nielsen, M. Manno, M. Johnson, Y. Yan, Y. Losovyj, P. Dowben, E. S. Aydil, C. Leighton, ACS Appl. Mater. Interfaces 2015, 7, 14130. 57. D. M. Roberts, S. E. Russek, C. R. Stoldt, CrystEngComm 2019, 21, 3304. 58. H. Shiozawa, T. Pichler, A. Grüneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Adv. Mater. 2008, 20, 1443. 59. Yu. N. Pal'yanov, A. F. Khokhryakov, Yu. M. Borzdov, A. G. Sokol, V. A. Gusev, G. M. Rylov, N. V. Sobolev, Geol. Geofiz. 1997, 38, 882, 920–945. 60. Y. N. Palyanov, Y. M. Borzdov, I. N. Kupriyanov, A. F. Khokhryakov, Cryst. Growth Des. 2012, 12, 5571. 61. Y. V. Fedoseeva, A. V Okotrub, V. O. Koroteev, Y. M. Borzdov, Y. N. Palyanov, Y. V. Shubin, E. A. Maksimovskiy, A. A. Makarova, W. Münchgesang, L. G. Bulusheva, A. Vyalikh, Carbon 2019, 141, 323. 62. Yu. N Palyanov, I. N. Kupriyanov, Yu. M. Borzdov, A. G. Sokol, A. F. Khokhryakov, Cryst. Growth Des. 2009, 9, 2922.