Инд. авторы: Smetanin S.N., Jelínek M., Kubeček V., Kurus A.F., Vedenyapin V.N., Lobanov S.I., Isaenko L.I.
Заглавие: 50-μJ level, 20-picosecond, narrowband difference-frequency generation at 4.6, 5.4, 7.5, 9.2, and 10.8 μm in LiGaS2 and LiGaSe2 at Nd:YAG laser pumping and various crystalline Raman laser seedings
Библ. ссылка: Smetanin S.N., Jelínek M., Kubeček V., Kurus A.F., Vedenyapin V.N., Lobanov S.I., Isaenko L.I. 50-μJ level, 20-picosecond, narrowband difference-frequency generation at 4.6, 5.4, 7.5, 9.2, and 10.8 μm in LiGaS2 and LiGaSe2 at Nd:YAG laser pumping and various crystalline Raman laser seedings // Optical Materials Express. - 2020. - Vol.10. - Iss. 8. - P.1881-1890. - ISSN 2159-3930.
Внешние системы: DOI: 10.1364/OME.395370; РИНЦ: 45372033; РИНЦ: 45372033; SCOPUS: 2-s2.0-85089662394; WoS: 000558732600014;
Реферат: eng: A comparative study of picosecond mid-IR difference frequency generation in a wide wavelength range of 4.6-10.8 μm in a simple down-converter based on the 8-mm long, high-damage-threshold crystals of LiGaS2 or LiGaSe2 under the 5-mJ, 20-ps, 1.064-μm Nd:YAG laser pumping and the single-pass crystalline (CaCO3*BaWO4, CVD-diamond) Raman laser seeding was presented. 10-μJ-level*narrowband (<2 cm-1) generation at discrete wavelengths of 4.6, 5.4, 7.5, and 9.2 μm with the optical frequencies equal to the vibrational Raman frequency or its second harmonic of various crystalline Raman seeders was demonstrated. Optimization of the pump spot and mode-matching between the pump and signal spots allowed to increase the output pulse energy up to 50 μJ in the case of LiGaSe2. © 2020.
Ключевые слова: Wavelength ranges; Second harmonics; Raman frequencies; Optical frequency; Down converters; Difference-frequency generation; Damage threshold; Comparative studies; Selenium compounds; Optical pumping; Neodymium lasers; Neodymium compounds; Lithium compounds; Gallium compounds; Calcium carbonate; Calcite; Yttrium aluminum garnet; Sulfur compounds;
Издано: 2020
Физ. характеристика: с.1881-1890
Цитирование: 1. V. Petrov, "Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals, " Prog. Quantum Electron. 42, 1-106 (2015). 2. M. Ebrahim-Zadeh and I. T. Sorokina, eds., Mid-Infrared Coherent Sources and Applications (Springer, 2005). 3. V. Petrov, Y. Tanaka, and T. Suzuki, "Parametric generation of 1-ps pulses between 5 and 11 urn with aZnGeP2 crystal, " IEEE J. Quantum Electron. 33(10), 1749-1755 (1997). 4. S. Chaitanya Kumar, M. Jelinek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh, "Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2, " Opt. Express 20(14), 15703-15709 (2012). 5. A. Peremans, F. Cecchet, P. G. Schunemann, K. T. Zawilski, and V. Petrov, "Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4 um, " Opt. Lett. 34(20), 3053-3055 (2009). 6. K. L. Vodopyanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, "AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 um, " Appl. Phys. Lett. 75(9), 1204-1206 (1999). 7. H. J. Krause and W. Daum, "High-Power Source of Coherent Picosecond Light Pulses Tunable from 0.41 to 12.9 Um, " Appl. Phys. B 56(1), 8-13 (1993). 8. L. I. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, "Ternary chalcogenides LiBC2 (B = In, Ga; C = S, Se, Te) for mid-IR nonlinear optics, " J. Non-Cryst. Solids 352(23-25), 2439-2443 (2006). 9. L. I. Isaenko, I. Vasilyeva, A. Merkulov, A. Yelisseyev, and S. Lobanov, "Growth of new nonlinear crystals LiMX2 (M = Al, In, Ga; X = S, Se, Te) for the mid-IR optics, " J. Cryst. Growth 275(1-2), 217-223 (2005). 10. A. Tyazhev, V. N. Vedenyapin, G. Marchev, L. I. Isaenko, D. Kolker, S. Lobanov, V. Petrov, A. Yelisseyev, M. Starikova, and J. J. Zondy, "Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS2, " Opt. Mater. 35(8), 1612-1615 (2013). 11. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J. J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. I. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, "Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate, " J. Opt. Soc. Am. B 21(11), 1981-2007 (2004). 12. V. N. Vedenyapin, A. Boyko, D. Kolker, L. I. Isaenko, S. Lobanov, N. Kostyukova, A. Yelisseyev, J. J. Zondy, and V. Petrov, "LiGaSe2 optical parametric oscillator pumped by a Q-switched Nd:YAG laser, " Laser Phys. Lett. 13(11), 115401 (2016). 13. V. Petrov, J. J. Zondy, O. Bidault, L. I. Isaenko, V. N. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, "Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate, " J. Opt. Soc. Am. B 27(9), 1902-1927 (2010). 14. V. Petrov, A. Yelisseyev, L. I. Isaenko, S. Lobanov, A. Titov, and J. J. Zondy, "Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2, " Appl. Phys. B 78(5), 543-546 (2004). 15. M. Beutler, I. Rimke, E. Büttner, V. Petrov, and L. I. Isaenko, "Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources, " Opt. Lett. 39(15), 4353-4355 (2014). 16. R. L. York, G. J. Holinga, D. R. Guyer, K. R. McCrea, R. S. Ward, and G. A. Somorjai, "A new optical parametric amplifier based on lithium thioindate used for sum frequency generation vibrational spectroscopic studies of the amide I mode of an interfacial model peptide, " Appl. Spectrosc. 62(9), 937-940 (2008). 17. E. C. Welch, S. Y. Tochitsky, J. J. Pigeon, and C. Joshi, "Long-wave infrared picosecond parametric amplifier based on Raman shifter technology, " Opt. Express 26(5), 5154-5163 (2018). 18. M. N. Polyanskiy, M. Babzien, and I. V. Pogorelsky, "Chirped-pulse amplification in a CO2 laser, " Optica 2(8), 675-681 (2015). 19. S.N. Smetanin, M. Jelínek, A. F. Kurus, L. I. Isaenko, and V. Kubeček, "Difference-frequency generation at 9.2 & 4.6 Um in LiGaS2 pumped by a 20-picosecond Nd:YAG/CaCO3 Raman laser, " IEEE Xplore Digital Library, Conference on Lasers and Electro-Optics (CLEO-PR, Hong Kong), W3A.52 (2018). 20. S. N. Smetanin, "Determination of the stimulated Raman scattering threshold for a pump pulse of arbitrary width, " Opt. Spectrosc. 121(3), 395-404 (2016). 21. K. Kato, K. Miyata, L. I. Isaenko, S. Lobanov, V. N. Vedenyapin, and V. Petrov, "Phase-matching properties of LiGaS2 in the 1.025-10.5910 um spectral range, " Opt. Lett. 42(21), 4363-1366 (2017). 22. M. Murtagh, J. Lin, R. P. Mildren, and D. J. Spence, "Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration, " Opt. Lett. 39(10), 2975-2978 (2014). 23. V. G. Savitski, S. Reilly, and A. J. Kemp, "Steady-state Raman gain in diamond as a function of pump wavelength, " IEEE J. Quantum Electron. 49(2), 218-223 (2013). 24. P. Černý, H. Jelínková, P. G. Zverev, and T. T. Basiev, "Solid state lasers with Raman frequency conversion, " Prog. Quantum Electron. 28(2), 113-143 (2004). 25. S.N. Smetanin, M. E. Doroshenko, L. Ivleva, M. Jelínek, V. Kubeček, and H. Jelínková, "Low-threshold parametric Raman generation of high-order Raman components in crystals, " Appl. Phys. B 117(1), 225-234 (2014). 26. S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, "Low-threshold collinear parametric Raman comb generation in calcite under 532 and 1064 nm picosecond laser pumping, " Laser Phys. Lett. 12(9), 095403 (2015). 27. S.N. Smetanin, M. Jelínek, D. P. Tereshchenko, and V. Kubeček, "Extracavity pumped parametric Raman nanosecond crystalline anti-Stokes laser at 954 nm with collinear orthogonally polarized beam interaction at tangential phase matching, " Opt. Express 26(18), 22637-22649 (2018). 28. L. I. Isaenko and A. P. Yelisseyev, "Recent studies of nonlinear chalcogenide crystals for the mid-IR, " Semicond. Sci. Technol. 31(12), 123001 (2016).