Цитирование: | 1. Kukushkin, Yu.N., Dimethyl sulfoxide – an important aprotic solvent. Soros Educ. J.(9), 1997, 54–59 Russian http://www.pereplet.ru/obrazovanie/stsoros/399.html.
2. Nakaoki, T., Yamashita, H., Size and weight fraction of solvent crystals in poly (vinyl alcohol) gel prepared from dimethylsulfoxide/water solution. Open J. Org. Polym. Mater. 6:April (2016), 86–97, 10.4236/ojopm.2016.62009.
3. Vignes, R.P., Dimethyl sulfoxide (DMSO) - a “new” clean, unique, superior solvent. American Chemical Society Annual Meeting, August 20–24, 2000, Report, 2000 20 pp, Washington, DC http://pedagogie.ac-limoges.fr/physique-chimie/IMG/pdf/vignes-acs.pdf.
4. Gordon, A.J., Ford, R.A., The Chemist's Companion: A Handbook of Practical Data, Techniques, and References. 1972, Wiley, New York (560 pp).
5. http://chemistry-chemists.com/N3_2011/U/DimethylSulfoxide.pdf.
6. Naixian, X., Yixiang, Y., Researches on reduction of sulfur in organic medium by controlled potential coulometry. Chem. J. Chin. Univ. 9:10 (1988), 1088–1090 http://www.cjcu.jlu.edu.cn/EN/abstract/abstract22599.shtml.
7. Kvakovszky, G., McKim, A.S., Moore, J., A review of microelectronic manufacturing applications using DMSO-based chemistries. ECS Trans. 11:2 (2007), 227–234, 10.1149/1.2779383.
8. Tashrifi, Z., Khanaposhtani, M.M., Larijani, B., Mahdavi, M., Dimethyl sulfoxide: yesterday's solvent, today's reagent (review). Adv. Synth. Catal. 362:1 (2020), 65–86, 10.1002/adsc.201901021.
9. Savintsev, Yu.P., Shevchenko, V.S., Urakaev, F.Kh., Investigation of the composite materials on the basis of nanoparticles of sulfur. J. Cryst. Growth 275:1–2 (2005), e2345–e2350, 10.1016/j.jcrysgro.2004.11.331.
10. Li, K., Wang, B., Su, D., Park, J., Ahn, H., Wang, G., Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. J. Power Sources 202:15March (2012), 389–393, 10.1016/j.jpowsour.2011.11.073.
11. Thackray, M., Melting point intervals of sulfur allotropes. J. Chem. Eng. Data 15:4 (1970), 495–497, 10.1021/je60047a018.
12. Jeschke, S., Johansson, P., Predicting the solubility of sulfur: a COSMO-RS-based approach to investigate electrolytes for Li-S batteries. Chem. Eur. J. 23:38 (2017), 9130–9136, 10.1002/chem.201701011 see also Supporting Information https://chemistry-europe.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fchem.201701011&file=chem201701011-sup-0001-misc_information.pdf.
13. Zheng, D., Zhang, H., Li, C., McKinnon, M.E., Sadok, R.G., Qu, D., Yu, X., Lee, H.-S., Yang, X.-Q., Qua, D., Quantitative chromatographic determination of dissolved elemental sulfur in the non-aqueous electrolyte for lithium-sulfur batteries. J. Electrochem. Soc. 162:1 (2015), A203–A206, 10.1149/2.1011501jes see also Supporting Information https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.201401888&file=aenm201401888-sup-0001-S1.pdf.
14. http://www.sofex-silicone.ru/silikonovoe_maslo.
15. Abbott, S., Solubility science: principles and practice, (version 1.0.1.2), creative commons BY-ND, attribution and no-derivatives license. 194pp https://www.stevenabbott.co.uk/_downloads/Solubility%20Science%20Principles%20and%20Practice.pdf, 2018.
16. Bradley, R.S., The specific heat and other thermodynamic functions of rhombic and monoclinic sulphur and their application to the kinetics and thermodynamics of phase transformation. Trans. Faraday Soc. 50 (1954), 1182–1187, 10.1039/tf9545001182.
17. Briske, C., Hartshorne, N.H., Linear rate of the polymorphic transformations of sulphur. Trans. Faraday Soc. 63 (1967), 1546–1552, 10.1039/tf9676301546.
18. Vezzoli, G.C., Walsh, P.J., Discussion of the melting curve and polymorphism of sulfur. High Temp. High Press. 9:3 (1977), 345–359 www.oldcitypublishing.com/pdf 4858.
19. Basin, A.S., Nenashev, B.G., Points of melting-crystallisation and polymorphic transformations of sulfur in density-temperature coordinates. High Temp. High Press. 32:4 (2000), 461–466, 10.1068/htwu48.
20. Meyer, B., Elemental sulfur. Chem. Rev. 76:3 (1976), 367–388, 10.1021/cr60301a003.
21. Steudel, R., Eckert, B., Solid Sulfur Allotropes (in: R. Steudel eds, Elemental Sulfur and Sulfur-Rich Compounds I, Springer, Berlin-Heidelberg, 2003). Top. Curr. Chem. 230 (2003), 1–79, 10.1007/b12110.
22. Crapanzano, L., Polymorphism of Sulfur: Structural and Dynamical Aspects. 2006, Physics Université Joseph-Fourier, Grenoble I 179pp https://tel.archives-ouvertes.fr/tel-00204149/document.
23. Kutney, G., Sulfur: History, Technology, Applications & Industry. 2 edition, 2013, ChemTec Publishing Toronto. 260рp https://www.amazon.com/Sulfur-History-Technology-Applications-Industry/dp/1895198674.
24. Urakaev, F.Kh., Simulation of the mechanically induced self-propagating reactions: heat source of “viscous flow” and mechanism of MSR in Zn-S system. Combust. Sci. Technol. 185:9 (2013), 1281–1294, 10.1080/00102202.2013.783028.
25. Urakaev, F.Kh., Mechanism and kinetics of mechanochemical processes. Sopicka-Lizer, M., (eds.) High-energy Ball Milling: Mechanochemical Processing of Nanopowders, 2010, Woodhead Publishing Limited, Oxford-Cambridge-New Delhi, 9–44, 10.1533/9781845699444.1.9 422 p. - Chapter 2.
26. Urakaev, F.Kh., Boldyrev, V.V., Mechanism and kinetics of mechanochemical processes in comminuting devices 2. Applications of the theory. Exper. Powder Technol. 107:3 (2000), 197–206, 10.1016/S0032-5910(99)00200-4.
27. Anwar, J., Zahn, D., Polymorphic phase transitions: macroscopic theory and molecular simulation. Adv. Drug Deliv. Rev. 117:1August (2017), 47–70, 10.1016/j.addr.2017.09.017.
28. Smets, M.M.H., Kalkman, E., Krieger, A., Tinnemans, P., Meekes, H., Vlieg, E., Cuppen, H.M., On the mechanism of solid-state phase transitions in molecular crystals – the role of cooperative motion in (quasi)racemic linear amino acids. IUCrJ 7:Pt2 (2020), 331–341, 10.1107/S2052252520001335.
29. Batisai, E., Ayamine, A., Kilinkissa, O.E.A., Báthori, N.B., Melting point–solubility–structure correlations in multicomponent crystals containing fumaric or adipic acid. CrystEngComm 16:43 (2014), 9992–9998, 10.1039/C4CE01298D.
30. Kumar, S., Nanda, A., Pharmaceutical cocrystals: an overview. Indian J. Pharm. Sci. 79:6 (2017), 858–871, 10.4172/pharmaceutical-sciences.1000302.
31. Aakeroy, C.B., Forbes, S., Desper, J., Using cocrystals to systematically modulate aqueous solubility and melting behaviour of an anticancer drug. J. Am. Chem. Soc. 131:47 (2009), 17048–17049, 10.1021/ja907674c.
32. Hildebrand, J.H., Factors determining solubility among non-electrolytes. Proc. Natl. Acad. Sci. USA 36:1 (1950), 7–15, 10.1073/pnas.36.1.7.
33. Bondi, A., Scott, L., Melting points of mixtures of cetyl caprate with lauryl myristate. Nature 167:24March (1951), 485–486, 10.1038/167485b0.
|