Инд. авторы: Burkitbayev M.М., Urakaev F.Kh
Заглавие: Temperature dependence of sulfur solubility in dimethyl sulfoxide and changes in concentration of supersaturated sulfur solutions at 25 °C
Библ. ссылка: Burkitbayev M.М., Urakaev F.Kh Temperature dependence of sulfur solubility in dimethyl sulfoxide and changes in concentration of supersaturated sulfur solutions at 25 °C // Journal of Molecular Liquids. - 2020. - Vol.316. - Art.113886. - ISSN 0167-7322.
Внешние системы: DOI: 10.1016/j.molliq.2020.113886; РИНЦ: 45419061; SCOPUS: 2-s2.0-85089201980; WoS: 000568693000020;
Реферат: eng: This is the first systematic study on the isothermal dependence of the solubility of rhombic sulfur in dimethyl sulfoxide at a temperature range of 298–448 K (25–175 °C) using a gravity method. It was found that sulfur solubility is affected not only by the temperature of the solvent, but also by the phase transition of sulfur to monoclinic modification occurring during the dissolution process, as well as by the melting of the rhombic phase of sulfur. It was shown that the concentration of a supersaturated sulfur solution in dimethyl sulfoxide under standard states, obtained by cooling isothermally heated solutions to 298 K (25 °C), increases significantly as the temperature of the isotherm rises, which contrasts with the findings available in the existing literature. Key aspects of sulfur solubility in DMSO are considered. © 2020 Elsevier B.V.
Ключевые слова: Temperature range; Temperature dependence; Systematic study; Sulfur solubility; Rhombic phase; Gravity method; Temperature distribution; Solubility; Organic solvents; Isotherms; Temperature dependence; Sulfur solubility; Saturated and supersaturated solutions; Dimethyl sulfoxide; Dissolution process; Dimethyl sulfoxide;
Издано: 2020
Физ. характеристика: 113886
Цитирование: 1. Kukushkin, Yu.N., Dimethyl sulfoxide – an important aprotic solvent. Soros Educ. J.(9), 1997, 54–59 Russian http://www.pereplet.ru/obrazovanie/stsoros/399.html. 2. Nakaoki, T., Yamashita, H., Size and weight fraction of solvent crystals in poly (vinyl alcohol) gel prepared from dimethylsulfoxide/water solution. Open J. Org. Polym. Mater. 6:April (2016), 86–97, 10.4236/ojopm.2016.62009. 3. Vignes, R.P., Dimethyl sulfoxide (DMSO) - a “new” clean, unique, superior solvent. American Chemical Society Annual Meeting, August 20–24, 2000, Report, 2000 20 pp, Washington, DC http://pedagogie.ac-limoges.fr/physique-chimie/IMG/pdf/vignes-acs.pdf. 4. Gordon, A.J., Ford, R.A., The Chemist's Companion: A Handbook of Practical Data, Techniques, and References. 1972, Wiley, New York (560 pp). 5. http://chemistry-chemists.com/N3_2011/U/DimethylSulfoxide.pdf. 6. Naixian, X., Yixiang, Y., Researches on reduction of sulfur in organic medium by controlled potential coulometry. Chem. J. Chin. Univ. 9:10 (1988), 1088–1090 http://www.cjcu.jlu.edu.cn/EN/abstract/abstract22599.shtml. 7. Kvakovszky, G., McKim, A.S., Moore, J., A review of microelectronic manufacturing applications using DMSO-based chemistries. ECS Trans. 11:2 (2007), 227–234, 10.1149/1.2779383. 8. Tashrifi, Z., Khanaposhtani, M.M., Larijani, B., Mahdavi, M., Dimethyl sulfoxide: yesterday's solvent, today's reagent (review). Adv. Synth. Catal. 362:1 (2020), 65–86, 10.1002/adsc.201901021. 9. Savintsev, Yu.P., Shevchenko, V.S., Urakaev, F.Kh., Investigation of the composite materials on the basis of nanoparticles of sulfur. J. Cryst. Growth 275:1–2 (2005), e2345–e2350, 10.1016/j.jcrysgro.2004.11.331. 10. Li, K., Wang, B., Su, D., Park, J., Ahn, H., Wang, G., Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. J. Power Sources 202:15March (2012), 389–393, 10.1016/j.jpowsour.2011.11.073. 11. Thackray, M., Melting point intervals of sulfur allotropes. J. Chem. Eng. Data 15:4 (1970), 495–497, 10.1021/je60047a018. 12. Jeschke, S., Johansson, P., Predicting the solubility of sulfur: a COSMO-RS-based approach to investigate electrolytes for Li-S batteries. Chem. Eur. J. 23:38 (2017), 9130–9136, 10.1002/chem.201701011 see also Supporting Information https://chemistry-europe.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fchem.201701011&file=chem201701011-sup-0001-misc_information.pdf. 13. Zheng, D., Zhang, H., Li, C., McKinnon, M.E., Sadok, R.G., Qu, D., Yu, X., Lee, H.-S., Yang, X.-Q., Qua, D., Quantitative chromatographic determination of dissolved elemental sulfur in the non-aqueous electrolyte for lithium-sulfur batteries. J. Electrochem. Soc. 162:1 (2015), A203–A206, 10.1149/2.1011501jes see also Supporting Information https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.201401888&file=aenm201401888-sup-0001-S1.pdf. 14. http://www.sofex-silicone.ru/silikonovoe_maslo. 15. Abbott, S., Solubility science: principles and practice, (version 1.0.1.2), creative commons BY-ND, attribution and no-derivatives license. 194pp https://www.stevenabbott.co.uk/_downloads/Solubility%20Science%20Principles%20and%20Practice.pdf, 2018. 16. Bradley, R.S., The specific heat and other thermodynamic functions of rhombic and monoclinic sulphur and their application to the kinetics and thermodynamics of phase transformation. Trans. Faraday Soc. 50 (1954), 1182–1187, 10.1039/tf9545001182. 17. Briske, C., Hartshorne, N.H., Linear rate of the polymorphic transformations of sulphur. Trans. Faraday Soc. 63 (1967), 1546–1552, 10.1039/tf9676301546. 18. Vezzoli, G.C., Walsh, P.J., Discussion of the melting curve and polymorphism of sulfur. High Temp. High Press. 9:3 (1977), 345–359 www.oldcitypublishing.com/pdf 4858. 19. Basin, A.S., Nenashev, B.G., Points of melting-crystallisation and polymorphic transformations of sulfur in density-temperature coordinates. High Temp. High Press. 32:4 (2000), 461–466, 10.1068/htwu48. 20. Meyer, B., Elemental sulfur. Chem. Rev. 76:3 (1976), 367–388, 10.1021/cr60301a003. 21. Steudel, R., Eckert, B., Solid Sulfur Allotropes (in: R. Steudel eds, Elemental Sulfur and Sulfur-Rich Compounds I, Springer, Berlin-Heidelberg, 2003). Top. Curr. Chem. 230 (2003), 1–79, 10.1007/b12110. 22. Crapanzano, L., Polymorphism of Sulfur: Structural and Dynamical Aspects. 2006, Physics Université Joseph-Fourier, Grenoble I 179pp https://tel.archives-ouvertes.fr/tel-00204149/document. 23. Kutney, G., Sulfur: History, Technology, Applications & Industry. 2 edition, 2013, ChemTec Publishing Toronto. 260рp https://www.amazon.com/Sulfur-History-Technology-Applications-Industry/dp/1895198674. 24. Urakaev, F.Kh., Simulation of the mechanically induced self-propagating reactions: heat source of “viscous flow” and mechanism of MSR in Zn-S system. Combust. Sci. Technol. 185:9 (2013), 1281–1294, 10.1080/00102202.2013.783028. 25. Urakaev, F.Kh., Mechanism and kinetics of mechanochemical processes. Sopicka-Lizer, M., (eds.) High-energy Ball Milling: Mechanochemical Processing of Nanopowders, 2010, Woodhead Publishing Limited, Oxford-Cambridge-New Delhi, 9–44, 10.1533/9781845699444.1.9 422 p. - Chapter 2. 26. Urakaev, F.Kh., Boldyrev, V.V., Mechanism and kinetics of mechanochemical processes in comminuting devices 2. Applications of the theory. Exper. Powder Technol. 107:3 (2000), 197–206, 10.1016/S0032-5910(99)00200-4. 27. Anwar, J., Zahn, D., Polymorphic phase transitions: macroscopic theory and molecular simulation. Adv. Drug Deliv. Rev. 117:1August (2017), 47–70, 10.1016/j.addr.2017.09.017. 28. Smets, M.M.H., Kalkman, E., Krieger, A., Tinnemans, P., Meekes, H., Vlieg, E., Cuppen, H.M., On the mechanism of solid-state phase transitions in molecular crystals – the role of cooperative motion in (quasi)racemic linear amino acids. IUCrJ 7:Pt2 (2020), 331–341, 10.1107/S2052252520001335. 29. Batisai, E., Ayamine, A., Kilinkissa, O.E.A., Báthori, N.B., Melting point–solubility–structure correlations in multicomponent crystals containing fumaric or adipic acid. CrystEngComm 16:43 (2014), 9992–9998, 10.1039/C4CE01298D. 30. Kumar, S., Nanda, A., Pharmaceutical cocrystals: an overview. Indian J. Pharm. Sci. 79:6 (2017), 858–871, 10.4172/pharmaceutical-sciences.1000302. 31. Aakeroy, C.B., Forbes, S., Desper, J., Using cocrystals to systematically modulate aqueous solubility and melting behaviour of an anticancer drug. J. Am. Chem. Soc. 131:47 (2009), 17048–17049, 10.1021/ja907674c. 32. Hildebrand, J.H., Factors determining solubility among non-electrolytes. Proc. Natl. Acad. Sci. USA 36:1 (1950), 7–15, 10.1073/pnas.36.1.7. 33. Bondi, A., Scott, L., Melting points of mixtures of cetyl caprate with lauryl myristate. Nature 167:24March (1951), 485–486, 10.1038/167485b0.