Инд. авторы: Chepurov A.I., Sonin V.M., Zhimulev E.I., Chepurov A.A.
Заглавие: Preservation conditions of CLIPPIR diamonds in the earth's mantle in a heterogeneous metal-sulphide-silicate medium (experimental modeling)
Библ. ссылка: Chepurov A.I., Sonin V.M., Zhimulev E.I., Chepurov A.A. Preservation conditions of CLIPPIR diamonds in the earth's mantle in a heterogeneous metal-sulphide-silicate medium (experimental modeling) // Journal of Mineralogical and Petrological Sciences. - 2020. - Vol.115. - Iss. 3. - P.236-246. - ISSN 1345-6296. - EISSN 1349-3825.
Внешние системы: DOI: 10.2465/jmps.190818; РИНЦ: 45475311; SCOPUS: 2-s2.0-85087910747; WoS: 000561102400002;
Реферат: eng: The genesis of CLIPPIR diamonds (Cullinan-like, large, inclusion-poor, pure, irregular, and resorbed) have attracted much interest due to their possible crystallization from metal melt in deep horizons of the earth's mantle. These diamonds usually show a pronounced resorption and irregular morphology. The present paper reports new experimental data on the dissolution of diamond crystals at high P-T parameters in Fe-S melt containing large amounts of silicate components (5-20 wt%). The experiments were performed using a split-sphere multi-anvil apparatus (BARS) at a pressure of 4 GPa and a temperature of 1450 °C. The samples consisted of natural diamond crystals placed in mixtures of Fe, S, and kimberlite. Wide variations in dissolution rates of diamond crystals were obtained. The absence of diamond dissolution in a heterogeneous medium indicates that the amount of solid silicate phases present in metal melt plays a role in the preservation of diamonds. This study demonstrated how diamonds can be stored in natural environments due to the heterogeneity of the medium composition which could insulate diamonds from the metal-sulphide melt. The obtained results improve our understanding of processes that lead to preservation of CLIPPIR diamonds in the deep mantle. © 2020 Tohoku University.
Ключевые слова: Experiment; CLIPPIR diamond; High pressure; Metal melt;
Издано: 2020
Физ. характеристика: с.236-246
Цитирование: 1. Arima, M. and Inoue, M. (1995) High pressure experimental study on growth and resorption of diamond in kimberlite melt. Proceedings of the 6rd International Kimberlite Conference, UIGGM SB RAS, Novosibirsk, Russia, 8-10. 2. Arima, M. and Kozai, Y. (2008) Diamond dissolution rates in kim-berlitic melts at 1300-1500 °C in the graphite stability field. European Journal of Mineralogy, 20, 357-364. 3. Bogatyreva, G.P., Kruk, V.B. and Sokhina, L.A. (1974) Determination of diamond content in diamond-bearing materials. Synthetic diamonds, 5, 19-21 (in Russian). 4. Bowen, D.C., Ferraris, R.D., Palmer, C.E. and Ward, J.D. (2009) On the unusual characteristics of diamonds from Letseng-la-Terae kimberlites, Lesotho. Lithos, 112S, 767-774. 5. Bulatov, V.K., Girnis, A.V., Brey, G.P., Woodland, A.B. and Hofer, H.E. (2019) Ferropericlase crystallization under upper mantle conditions. Contributions to Mineralogy and Petrology, 174, 45. 6. Chepurov, A.I., Tomilenko, A.A., Shebanin, A.P. and Sobolev, N. V (1994) Fluid inclusions in diamonds from alluvial deposits of Yakutia. DoKlady Akademii Nauk SSSR, 336, 662-665. 7. Chepurov, A.I., Fedorov, I.I. and Sonin, V.M. (1998) Experimental studies of diamond formation at high P-T parameters (supplement to the model for natural diamond formation). Geologia i Geofizika, 39, 234-244 (in Russian). 8. Chepurov, A.I., Fedorov, I.I., Sonin, V.M., Bagryantsev, D.G. and Osorgin, N. Yu. (1999) Diamond formation during reduction of oxide-and silicate-carbon systems at high P-T conditions. European Journal of Mineralogy, 11, 355-362. 9. Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., Sonin, V.M., et al. (2010) Problem of water in the upper mantle: antigorite breakdown. Doklady Earth Sciences, 434, 1275-1278. 10. Chepurov, A.I., Sonin, V.M., Zhimulev, E.I., Chepurov, A.A. and Tomilenko, A.A. (2011) On the formation of element carbon during of CaCO3 at high P-T parameters under reducing conditions. Doklady Earth Sciences, 441, 1738-1741. 11. Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., Sonin, V.M., et al. (2012) The conservation of an aqueous fluid in inclusions in minerals and their interstices at high P-T parameters during the decomposition of antigorite. Russian Geology and Geophysics, 53, 234-246. 12. Chepurov, A.I., Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., et al. (2018) Dissolution of diamond crystals in a heterogeneous (metal-sulfide-silicate) medium at 4 GPa and 1400 °C. Journal of Mineralogical and Petrological Sciences, 113, 59-67. 13. Dasgupta, R. (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. In Carbon in Earth (Hazen, R.M. Jones, A.P. and Baross, Jo.A. Eds.). Reviews in Mineralogy and Geochemistry, 75, Mineralogical Society of America, Washington, D.C., 183-229. 14. Dasgupta, R. and Hirschmann, M.M. (2010) The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298, 1-13. 15. Day, H.W. (2012) A revised diamond-graphite transition curve. American Mineralogist, 97, 52-62. 16. Decker, D.L., Basset, W.A., Merril, L., Hall, H.T. and Barnet, J.D. (1972) High-pressure calibration: A critical review. Journal of Physical and Chemical Reference Data, 1, 773-836. 17. Frost, D.J. and McCammon, C.A. (2008) The redox state of the Earth's mantle. Annual Review of Earth Planetary Sciences, 36, 389-420. 18. Keppler, H., Wiendenbeck, M. and Shcheka, S.S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. Nature, 424, 414-416. 19. Khokhryakov, A.F. and Pal'yanov, Y.N. (2007) The evolution of diamond morphology in the process of dissolution: Experimental data. American Mineralogist, 92, 909-917. 20. Kozai, Y. and Arima, M. (2005) Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300-1420 °C and 1 GPa with controlled oxygen partial pressure. American Mineralogist, 90, 1759-1766. 21. Martirosyan, N.S., Yoshino, T., Shatskiy, A., Chanyshev, A.D. and Litasov, K.D. (2016) The CaCOj-Fe interaction: kinetic approach for carbonate subduction to the deep Earth's mantle. Physics of the Earth and Planetary Interiors, 259, 1-9. 22. Moore, A.E. (2009) Type II diamonds: Flamboyant megacrysts? South African Journal of Geology, 112, 23-38. 23. Moore, A.E. (2014) The origin of large irregular gem-quality type II diamonds and the rarity of blue type IIb varieties. South African Journal of Geology, 117, 219-236. 24. Nestola, F. (2017) Inclusions in super-deep diamonds: windows on the very deep Earth. Rendiconti Lincei. Scienze fisiche e nat-urali, 28, 595-604. 25. Nishida, K., Ohtani, E., Urakawa, S., Suzuki, A., et al. (2011) Density measurement of liquid FeS at high pressures using synchrotron X-ray absorption. American Mineralogist, 96, 864-868. 26. Orlov, I.U. (1977) The Mineralogy of the Diamond. pp. 235, Wiley. 27. Osorgin, N.I., Palianov, Y.N., Sobolev, N.V., Khokhryakova, I.P., et al. (1987) Inclusions of liquefied gases in diamond crystals. DoKlady Akademii Nauk SSSR, 293, 1214-1217. 28. Palyanov, Y.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., et al. (2013). Mantle-slab interaction and redox mechanism of diamond formation. Proceedings of the National Academy of Sciences, 110, 20408-20413. 29. Poli, S. (2015) Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nature Geoscience, 8, 633-636. 30. Rohrbach, A., Ballhaus, C., Gola-Schindler, U., Ulmer, P., et al. (2007) Metal saturation in the upper mantle. Nature, 449, 456-458. 31. Shcheka, S.S., Wiendenbeck, M., Frost, D.J. and Keppler, H. (2006) Carbon solubility in mantle minerals. Earth and Planetary Science Letters, 245, 730-732. 32. Shimoyama, Y., Terasaki, H., Ohtani, E., Urakawa, S., et al. (2013) Density of Fe-3.5 wt% C liquid at high pressure and temperature and the effect of carbon on the density of the molten iron. Physics of the Earth and Planetary Interiors, 224, 77-82. 33. Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., et al. (2016) Large gem diamonds from metallic liquid in Earth's deep mantle. Science, 35, 1403-1405. 34. Smith, E.M., Shirey, S.D. and Wang, W. (2017) The very deep origin of the World's biggest diamond. Gems & Gemology, 53, 388-403. 35. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I. and Osorgin, N.Y. (1997) Etching of diamond crystals in silicate melt in the presence of aqueous fluid under high P-T parameters. Geokhimiya, 4, 451-455 (in Russian with English abstract). 36. Sonin, V.M., Zhimulev, E.I., Tomilenko, A. A, Chepurov, S.A. and Chepurov, A.I. (2004) Chromatographic study of diamond etching in kimberlitic melts in the context of diamond natural stability. Geology of Ore Deposits, 46, 182-190. 37. Sonin, V.M., Zhimulev, E.I., Pomazanskiy, B.S., Zemnuhov, A.L., et al. (2018) Morphological features of diamond crystals dissolved in Fe07S0.3 melt at 4 GPa and 1400°C. Geology of Ore Deposits, 60, 82-92. 38. Stagno, V. and Frost, D.J. (2010) Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters, 300, 72-84. 39. Stagno, V, Dickson, O.O., McCammon, C.A. and Frost, D.J. (2013) The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature, 493, 84-88. 40. Turkin, A.I. (2003/2004) Lead selenide as a continuous internal indicator of pressure in solid-media cells of high-pressure apparatus in the range of 4-6.8 GPa. High Temperatures-High Pressures, 35-36, 371-376. 41. Zhang, Z., Lentsch, N. and Hirschmann, M.M. (2015) Carbon-saturated monosulfide melting in shallow mantle: solubility and effect on solidus. Contributions to Mineralogy and Petrology, 170, 47. 42. Zhang, Z., Hasting, P., Von der Handt, A. and Hirschmann, M.M. (2018) Experimental determination of carbon solubility in Fe-Ni-S melts. Geochimica et Cosmochimica Acta, 225, 66-79. 43. Zhimulev, E.I., Sonin, V.M., Fedorov, I.I., Tomilenko, A.A., et al. (2004) Diamond stability with respect to oxidation in experiments with minerals from mantle xenoliths at high P-T parameters. Geochemistry International, 42, 520-525. 44. Zhimulev, E.I., Chepurov, A.I., Sinyakova, E.F., Sonin, V.M., et al. (2012) Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metals melts in the genesis of diamond. Geochemistry International, 50, 205-216. 45. Zhimulev, E.I., Sonin, V.M., Mironov, A.M. and Chepurov, A.I. (2016) Effect of sulfur concentration on diamond crystallization in the Fe-C-S system at 5.3-5.5 GPa and 1300-1370 °C. Geochemistry International, 54, 415-422.