Инд. авторы: Kovács-Krausz Z., Hoque A.M., Makk P., Szentpéteri B., Kocsis M., Fülöp B., Yakushev M.V., Kuznetsova T.V., Tereshchenko O.E., Kokh K.A., Lukács I.E., Taniguchi T., Watanabe K., Dash S.P., Csonka S.
Заглавие: Electrically Controlled Spin Injection from Giant Rashba Spin-Orbit Conductor BiTeBr
Библ. ссылка: Kovács-Krausz Z., Hoque A.M., Makk P., Szentpéteri B., Kocsis M., Fülöp B., Yakushev M.V., Kuznetsova T.V., Tereshchenko O.E., Kokh K.A., Lukács I.E., Taniguchi T., Watanabe K., Dash S.P., Csonka S. Electrically Controlled Spin Injection from Giant Rashba Spin-Orbit Conductor BiTeBr // Nano letters. - 2020. - Vol.20. - Iss. 7. - P.4782-4791. - ISSN 1530-6992.
Внешние системы: DOI: 10.1021/acs.nanolett.0c00458; РИНЦ: 45456413; PubMed: 32511931; SCOPUS: 2-s2.0-85088207096; WoS: 000548893200012;
Реферат: eng: Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components utilization of spin-orbit phenomena provides promising alternatives. New materials with unique spin textures are highly desirable since all-electric creation and control of spin polarization is expected where the strength, as well as an arbitrary orientation of the polarization, can be defined without the use of a magnetic field. In this work, we use a novel spin-orbit crystal BiTeBr for this purpose. Because of its giant Rashba spin splitting, bulk spin polarization is created at room temperature by an electric current. Integrating BiTeBr crystal into graphene-based spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future spintronic applications in integrated circuits.
Ключевые слова: Rashba-Edelstein effect; polar semiconductors; graphene; all-electric spin control; 2D materials; nonlocal spin valve; Spintronics;
Издано: 2020
Физ. характеристика: с.4782-4791
Цитирование: 1. Manchon, A.; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A. New perspectives for Rashba spin-orbit coupling. Nat. Mater. 2015, 14, 871-882, 10.1038/nmat4360 2. Kane, C. L.; Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95, 226801, 10.1103/PhysRevLett.95.226801 3. Bernevig, B. A.; Zhang, S.-C. Quantum Spin Hall Effect. Phys. Rev. Lett. 2006, 96, 106802, 10.1103/PhysRevLett.96.106802 4. Konig, M.; Buhmann, H.; Molenkamp, L. W.; Hughes, T.; Liu, C.-X.; Qi, X.-L.; Zhang, S.-C. The Quantum Spin Hall Effect: Theory and Experiment. J. Phys. Soc. Jpn. 2008, 77, 031007, 10.1143/JPSJ.77.031007 5. Fu, L.; Kane, C. L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 2008, 100, 096407, 10.1103/PhysRevLett.100.096407 6. Sau, J. D.; Lutchyn, R. M.; Tewari, S.; Das Sarma, S. Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures. Phys. Rev. Lett. 2010, 104, 040502, 10.1103/PhysRevLett.104.040502 7. Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003-1007, 10.1126/science.1222360 8. Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y. Majorana zero modes in superconductor-semiconductor heterostructures. Nature Reviews Materials 2018, 3, 52-68, 10.1038/s41578-018-0003-1 9. Soumyanarayanan, A.; Reyren, N.; Fert, A.; Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 2016, 539, 509-517, 10.1038/nature19820 10. Schaibley, J.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.; Seyler, K.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nature Reviews Materials 2016, 1, 16055, 10.1038/natrevmats.2016.55 11. van der Wiel, W. G.; De Franceschi, S.; Elzerman, J. M.; Fujisawa, T.; Tarucha, S.; Kouwenhoven, L. P. quantum dots. Rev. Mod. Phys. 2002, 75, 1-22, 10.1103/RevModPhys.75.1 12. Kloeffel, C.; Loss, D. Prospects for Spin-Based Quantum Computing in Quantum Dots. Annu. Rev. Condens. Matter Phys. 2013, 4, 51-81, 10.1146/annurev-conmatphys-030212-184248 13. Chernyshov, A.; Overby, M.; Liu, X.; Furdyna, J. K.; Lyanda-Geller, Y.; Rokhinson, L. P. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 2009, 5, 656-659, 10.1038/nphys1362 14. Manchon, A.; Železný, J.; Miron, I. M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004, 10.1103/RevModPhys.91.035004 15. Sinova, J.; Valenzuela, S. O.; Wunderlich, J.; Back, C. H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213-1260, 10.1103/RevModPhys.87.1213 16. Zhao, B.; Khokhriakov, D.; Zhang, Y.; Fu, H.; Karpiak, B.; Hoque, A. M.; Xu, X.; Jiang, Y.; Yan, B.; Dash, S. P. Observation of charge to spin conversion in Weyl semimetal WTe2 at room tepmerature. Phys. Rev. Research 2020, 2, 013286, 10.1103/PhysRevResearch.2.013286 17. Safeer, C. K.; Ingla-Aynés, J.; Herling, F.; Garcia, J. H.; Vila, M.; Ontoso, N.; Calvo, M. R.; Roche, S.; Hueso, L. E.; Casanova, F. Room temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures. Nano Lett. 2019, 19, 1074-1082, 10.1021/acs.nanolett.8b04368 18. Nakayama, H.; Kanno, Y.; An, H.; Tashiro, T.; Haku, S.; Nomura, A.; Ando, K. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures. Phys. Rev. Lett. 2016, 117, 1-15, 10.1103/PhysRevLett.117.116602 19. Rojas-Sánchez, J.-C.; Oyarzún, S.; Fu, Y.; Marty, A.; Vergnaud, C.; Gambarelli, S.; Vila, L.; Jamet, M.; Ohtsubo, Y.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Reyren, N.; George, J.-M.; Fert, A. Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films. Phys. Rev. Lett. 2016, 116, 096602, 10.1103/PhysRevLett.116.096602 20. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 2016, 15, 1261-1266, 10.1038/nmat4726 21. Rodriguez-Vega, M.; Schwiete, G.; Sinova, J.; Rossi, E. Giant Edelstein effect in topological-insulator-graphene heterostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 235419, 10.1103/PhysRevB.96.235419 22. Ghiasi, T. S.; Kaverzin, A. A.; Blah, P. J.; van Wees, B. J. Charge-to-Spin Conversion by the Rashba-Edelstein Effect in Two-Dimensional van der Waals Heterostructures up to Room Temperature. Nano Lett. 2019, 19, 5959-5966, 10.1021/acs.nanolett.9b01611 23. Benítez, L. A.; Torres, W. S.; Sierra, J. F.; Timmermans, M.; Garcia, J. H.; Roche, S.; Costache, M. V.; Valenzuela, S. O. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 2020, 19, 170-175, 10.1038/s41563-019-0575-1 24. Vaklinova, K.; Hoyer, A.; Burghard, M.; Kern, K. Current-Induced Spin Polarization in Topological Insulator-Graphene Heterostructures. Nano Lett. 2016, 16, 2595-2602, 10.1021/acs.nanolett.6b00167 25. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 2011, 10, 521-6, 10.1038/nmat3051 26. Bahramy, M. S.; Arita, R.; Nagaosa, N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 041202, 10.1103/PhysRevB.84.041202 27. Eremeev, S. V.; Rusinov, I. P.; Nechaev, I. A.; Chulkov, E. V. Rashba split surface states in BiTeBr. New J. Phys. 2013, 15, 075015, 10.1088/1367-2630/15/7/075015 28. Maaß, H.; Bentmann, H.; Seibel, C.; Tusche, C.; Eremeev, S. V.; Peixoto, T. R. F.; Tereshchenko, O. E.; Kokh, K. A.; Chulkov, E. V.; Kirschner, J.; Reinert, F. Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 2016, 7, 11621, 10.1038/ncomms11621 29. Xin, J.; Fu, C.-G.; Shi, W.-J.; Li, G.-W.; Auffermann, G.; Qi, Y.-P.; Zhu, T.-J.; Zhao, X.-B.; Felser, C. Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture. Rare Met. 2018, 37, 274, 10.1007/s12598-018-1027-9 30. Sakano, M.; Bahramy, M. S.; Katayama, A.; Shimojima, T.; Murakawa, H.; Kaneko, Y.; Malaeb, W.; Shin, S.; Ono, K.; Kumigashira, H.; Arita, R.; Nagaosa, N.; Hwang, H. Y.; Tokura, Y.; Ishizaka, K. Strongly Spin-Orbit Coupled Two-Dimensional Electron Gas Emerging near the Surface of Polar Semiconductors. Phys. Rev. Lett. 2013, 110, 107204, 10.1103/PhysRevLett.110.107204 31. Akrap, A.; Teyssier, J.; Magrez, A.; Bugnon, P.; Berger, H.; Kuzmenko, A. B.; van der Marel, D. Optical properties of BiTeBr and BiTeCl. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 035201, 10.1103/PhysRevB.90.035201 32. Martin, C.; Suslov, A. V.; Buvaev, S.; Hebard, A. F.; Bugnon, P.; Berger, H.; Magrez, A.; Tanner, D. B. Experimental determination of the bulk Rashba parameters in BiTeBr. Europhys. Lett. 2016, 116, 57003, 10.1209/0295-5075/116/57003 33. Ideue, T.; Hamamoto, K.; Koshikawa, S.; Ezawa, M.; Shimizu, S.; Kaneko, Y.; Tokura, Y.; Nagaosa, N.; Iwasa, Y. Bulk rectification effect in a polar semiconductor. Nat. Phys. 2017, 13, 578-583, 10.1038/nphys4056 34. Bahramy, M.; Yang, B.-J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679, 10.1038/ncomms1679 35. Chen, Y.; Xi, X.; Yim, W.-L.; Peng, F.; Wang, Y.; Wang, H.; ma, Y.; Liu, G.; Sun, C.; Ma, C.; Chen, Z.; Berger, H. High-Pressure Phase Transitions and Structures of Topological Insulator BiTeI. J. Phys. Chem. C 2013, 117, 25677-25683, 10.1021/jp409824g 36. Crassee, I.; Borondics, F.; Tran, M. K.; Autès, G.; Magrez, A.; Bugnon, P.; Berger, H.; Teyssier, J.; Yazyev, O. V.; Orlita, M. et al. BiTeCl and BiTeBr: A comparative high-pressure optical study. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 95, 045201, 10.1103/PhysRevB.95.045201 37. Rusinov, I.; Menshchikova, T.; Sklyadneva, I.; Heid, R.; Bohnen, K.; Chulkov, E. Pressure effects on crystal and electronic structure of bismuth tellurohalides. New J. Phys. 2016, 18, 113003, 10.1088/1367-2630/18/11/113003 38. Ohmura, A.; Higuchi, Y.; Ochiai, T.; Kanou, M.; Nakano, S.; Ishikawa, F.; Nakayama, A.; Yamada, Y.; Sasagawa, T. Investigation of topological phase transition in BiTeBr under high pressure. J. Phys.: Conf. Ser. 2017, 950, 042036, 10.1088/1742-6596/950/4/042036 39. Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q. Superconductivity Bordering Rashba Type Topological Transition. Sci. Rep. 2017, 7, 39699, 10.1038/srep39699 40. Jin, M.; Zhang, S.; Xing, L.; Li, W.; Zhao, G.; Wang, X.; Long, Y.; Li, X.; Bai, H.; Gu, C.; Jin, C. Pressure-induced superconductivity and quantum phase transitions in the Rashba material BiTeCl. J. Phys. Chem. Solids 2019, 128, 211-217, 10.1016/j.jpcs.2017.09.024 41. Bawden, L.; Riley, J. M.; Kim, C. H.; Sankar, R.; Monkman, E. J.; Shai, D. E.; Wei, H. I.; Lochocki, E. B.; Wells, J. W.; Meevasana, W. et al. Hierarchical spin-orbital polarization of a giant Rashba system. Science Advances 2015, 1, e1500495 10.1126/sciadv.1500495 42. Shevelkov, A.; Dikarev, E.; Shpanchenko, R.; Popovkin, B. Crystal Structures of Bismuth Tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Diffraction Data. J. Solid State Chem. 1995, 114, 379-384, 10.1006/jssc.1995.1058 43. Aronov, A.; Lyanda-Geller, Y.; Pikus, G. Spin polarization of electrons by an electric current. Sov. Phys. JETP 1991, 73, 537-541 44. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 1990, 73, 233-235, 10.1016/0038-1098(90)90963-C 45. Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794-807, 10.1038/nnano.2014.214 46. Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571-574, 10.1038/nature06037 47. Dery, H.; Wu, H.; Ciftcioglu, B.; Huang, M.; Song, Y.; Kawakami, R.; Shi, J.; Krivorotov, I.; Zutic, I.; Sham, L. J. Nanospintronics Based on Magnetologic Gates. IEEE Trans. Electron Devices 2012, 59, 259-262, 10.1109/TED.2011.2173498 48. Popinciuc, M.; Józsa, C.; Zomer, P. J.; Tombros, N.; Veligura, A.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport in graphene field-effect transistors. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 214427, 10.1103/PhysRevB.80.214427 49. Han, W.; Pi, K.; McCreary, K. M.; Li, Y.; Wong, J. J. I.; Swartz, A. G.; Kawakami, R. K. Tunneling Spin Injection into Single Layer Graphene. Phys. Rev. Lett. 2010, 105, 167202, 10.1103/PhysRevLett.105.167202 50. Han, W.; McCreary, K.; Pi, K.; Wang, W.; Li, Y.; Wen, H.; Chen, J.; Kawakami, R. Spin transport and relaxation in graphene. J. Magn. Magn. Mater. 2012, 324, 369-381, 10.1016/j.jmmm.2011.08.001 51. Roche, S.; Valenzuela, S. O. Graphene spintronics: puzzling controversies and challenges for spin manipulation. J. Phys. D: Appl. Phys. 2014, 47, 094011, 10.1088/0022-3727/47/9/094011 52. Drögeler, M.; Volmer, F.; Wolter, M.; Terrés, B.; Watanabe, K.; Taniguchi, T.; Güntherodt, G.; Stampfer, C.; Beschoten, B. Nanosecond Spin Lifetimes in Single-and Few-Layer Graphene-hBN Heterostructures at Room Temperature. Nano Lett. 2014, 14, 6050-6055, 10.1021/nl501278c 53. Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571-574, 10.1038/nature06037 54. Jedema, F. J.; Costache, M. V.; Heersche, H. B.; Baselmans, J. J. A.; van Wees, B. J. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves. Appl. Phys. Lett. 2002, 81, 5162-5164, 10.1063/1.1532753 55. Sosenko, E.; Wei, H.; Aji, V. Effect of contacts on spin lifetime measurements in graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 245436, 10.1103/PhysRevB.89.245436 56. Han, W.; Pi, K.; Bao, W.; McCreary, K. M.; Li, Y.; Wang, W. H.; Lau, C. N.; Kawakami, R. K. Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl. Phys. Lett. 2009, 94, 222109, 10.1063/1.3147203 57. Schmidt, G.; Ferrand, D.; Molenkamp, L. W.; Filip, A. T.; van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, R4790-R4793, 10.1103/PhysRevB.62.R4790 58. Fert, A.; Jaffres, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64, 184420, 10.1103/PhysRevB.64.184420 59. Valet, T.; Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 7099-7113, 10.1103/PhysRevB.48.7099 60. Vignale, G. Ten Years of Spin Hall Effect. J. Supercond. Novel Magn. 2010, 23, 3, 10.1007/s10948-009-0547-9 61. Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O'Farrell, E. et al. Spin-orbit proximity effect in graphene. Nat. Commun. 2014, 5, 4875, 10.1038/ncomms5875 62. Garcia, J. H.; Cummings, A. W.; Roche, S. Spin Hall Effect and Weak Antilocalization in Graphene/Transition Metal Dichalcogenide Heterostructures. Nano Lett. 2017, 17, 5078-5083, 10.1021/acs.nanolett.7b02364 63. Dyakonov, M. I. Spin Hall Effect. Future Trends in Microelectronics 2010, 251-263, 10.1002/9780470649343.ch21 64. Milletarl`, M.; Offidani, M.; Ferreira, A.; Raimondi, R. Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems. Phys. Rev. Lett. 2017, 119, 246801, 10.1103/PhysRevLett.119.246801 65. Sanchez, J. C. R.; Vila, L.; Desfonds, G.; Gambarelli, S.; Attane, J. P.; De Teresa, J. M.; Magen, C.; Fert, A. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 2013, 4, 2944, 10.1038/ncomms3944 66. Isasa, M.; Martínez-Velarte, M. C.; Villamor, E.; Magén, C.; Morellón, L.; De Teresa, J. M.; Ibarra, M. R.; Vignale, G.; Chulkov, E. V.; Krasovskii, E. E. et al. Origin of inverse Rashba-Edelstein effect detected at the Cu/Bi interface using lateral spin valves. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 014420, 10.1103/PhysRevB.93.014420 67. Auvray, F.; Puebla, J.; Xu, M.; Rana, B.; Hashizume, D.; Otani, Y. Spin accumulation at nonmagnetic interface induced by direct Rashba-Edelstein effect. J. Mater. Sci.: Mater. Electron. 2018, 29, 15664-15670, 10.1007/s10854-018-9162-5 68. Du, Y.; Karube, S.; Gamou, H.; Ryu, J.; Takahashi, S.; Kohda, M.; Nitta, J. Anomalous spin orbit torques with large Rashba spin orbit coupling in epitaxial Pt/Co bilayers. 2018, arXiv:1807.10867. arXiv.org e-Print archive. https://arxiv.org/abs/1807.10867 (accessed Jun 03, 2020). 69. Avsar, A.; Unuchek, D.; Liu, J.; Sanchez, O. L.; Watanabe, K.; Taniguchi, T.; Özyilmaz, B.; Kis, A. Optospintronics in Graphene via Proximity Coupling. ACS Nano 2017, 11, 11678-11686, 10.1021/acsnano.7b06800 70. Hoque, A.; Khokhriakov, D.; Karpiak, B.; Dash, S. All-electrical creation and control of giant spin-galvanic effect in 1T-MoTe2/graphene heterostructures at room temperature. 2019, arXiv:1908.09367. arXiv.org e-Print archive. https://arxiv.org/abs/1908.09367 (accessed Jun 03, 2020). 71. Safeer, C. K.; Ontoso, N.; Ingla-Aynés, J.; Herling, F.; Pham, V. T.; Kurzmann, A.; Ensslin, K.; Chuvilin, A.; Robredo, I.; Vergniory, M. G.; de Juan, F.; Hueso, L. E.; Calvo, M. R.; Casanova, F. Large multi-directional spin-to-charge conversion in low symmetry semimetal MoTe2at room temperature. Nano Lett. 2019, 19, 8758-8766, 10.1021/acs.nanolett.9b03485 72. Li, L.; Zhang, J.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Kim, S.; Jin, T.; Cavill, S.; Kim, B. S.; Kim, C.; Lischner, J.; Ferreira, A.; Cho, S. Gate-Tunable Reversible Rashba-Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature. ACS Nano 2020, 14, 5251-5259, 10.1021/acsnano.0c01037 73. Khokhriakov, D.; Hoque, A. M.; Karpiak, B.; Dash, S. P. Giant and Gate-tunable Spin-Galvanic Effect in Graphene Topological insulator van der Waals Heterostructures at Room Temperature. 2019, arXiv:1910.06760. arXiv.org e-Print archive. https://arxiv.org/abs/1910.06760 (accessed Jun 03, 2020). 74. Dyrdał, A.; Barnaś, J.; Dugaev, V. K. Current-induced spin polarization in graphene due to Rashba spin-orbit interaction. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 075422, 10.1103/PhysRevB.89.075422 75. Offidani, M.; Milletarl`, M.; Raimondi, R.; Ferreira, A. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides. Phys. Rev. Lett. 2017, 119, 196801, 10.1103/PhysRevLett.119.196801 76. Kanou, M.; Sasagawa, T. Crystal growth and electronic properties of a 3D Rashba material, BiTeI, with adjusted carrier concentrations. J. Phys.: Condens. Matter 2013, 25, 135801, 10.1088/0953-8984/25/13/135801 77. Fülöp, B.; Tajkov, Z.; Petö, J.; Kun, P.; Koltai, J.; Oroszlány, L.; Tóvári, E.; Murakawa, H.; Tokura, Y.; Bordács, S.; Tapasztó, L.; Csonka, S. Exfoliation of single layer BiTeI flakes. 2D Mater. 2018, 5, 031013, 10.1088/2053-1583/aac652