Цитирование: | 1. Manchon, A.; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A. New perspectives for Rashba spin-orbit coupling. Nat. Mater. 2015, 14, 871-882, 10.1038/nmat4360
2. Kane, C. L.; Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95, 226801, 10.1103/PhysRevLett.95.226801
3. Bernevig, B. A.; Zhang, S.-C. Quantum Spin Hall Effect. Phys. Rev. Lett. 2006, 96, 106802, 10.1103/PhysRevLett.96.106802
4. Konig, M.; Buhmann, H.; Molenkamp, L. W.; Hughes, T.; Liu, C.-X.; Qi, X.-L.; Zhang, S.-C. The Quantum Spin Hall Effect: Theory and Experiment. J. Phys. Soc. Jpn. 2008, 77, 031007, 10.1143/JPSJ.77.031007
5. Fu, L.; Kane, C. L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 2008, 100, 096407, 10.1103/PhysRevLett.100.096407
6. Sau, J. D.; Lutchyn, R. M.; Tewari, S.; Das Sarma, S. Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures. Phys. Rev. Lett. 2010, 104, 040502, 10.1103/PhysRevLett.104.040502
7. Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003-1007, 10.1126/science.1222360
8. Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y. Majorana zero modes in superconductor-semiconductor heterostructures. Nature Reviews Materials 2018, 3, 52-68, 10.1038/s41578-018-0003-1
9. Soumyanarayanan, A.; Reyren, N.; Fert, A.; Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 2016, 539, 509-517, 10.1038/nature19820
10. Schaibley, J.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.; Seyler, K.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nature Reviews Materials 2016, 1, 16055, 10.1038/natrevmats.2016.55
11. van der Wiel, W. G.; De Franceschi, S.; Elzerman, J. M.; Fujisawa, T.; Tarucha, S.; Kouwenhoven, L. P. quantum dots. Rev. Mod. Phys. 2002, 75, 1-22, 10.1103/RevModPhys.75.1
12. Kloeffel, C.; Loss, D. Prospects for Spin-Based Quantum Computing in Quantum Dots. Annu. Rev. Condens. Matter Phys. 2013, 4, 51-81, 10.1146/annurev-conmatphys-030212-184248
13. Chernyshov, A.; Overby, M.; Liu, X.; Furdyna, J. K.; Lyanda-Geller, Y.; Rokhinson, L. P. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 2009, 5, 656-659, 10.1038/nphys1362
14. Manchon, A.; Železný, J.; Miron, I. M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004, 10.1103/RevModPhys.91.035004
15. Sinova, J.; Valenzuela, S. O.; Wunderlich, J.; Back, C. H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213-1260, 10.1103/RevModPhys.87.1213
16. Zhao, B.; Khokhriakov, D.; Zhang, Y.; Fu, H.; Karpiak, B.; Hoque, A. M.; Xu, X.; Jiang, Y.; Yan, B.; Dash, S. P. Observation of charge to spin conversion in Weyl semimetal WTe2 at room tepmerature. Phys. Rev. Research 2020, 2, 013286, 10.1103/PhysRevResearch.2.013286
17. Safeer, C. K.; Ingla-Aynés, J.; Herling, F.; Garcia, J. H.; Vila, M.; Ontoso, N.; Calvo, M. R.; Roche, S.; Hueso, L. E.; Casanova, F. Room temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures. Nano Lett. 2019, 19, 1074-1082, 10.1021/acs.nanolett.8b04368
18. Nakayama, H.; Kanno, Y.; An, H.; Tashiro, T.; Haku, S.; Nomura, A.; Ando, K. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures. Phys. Rev. Lett. 2016, 117, 1-15, 10.1103/PhysRevLett.117.116602
19. Rojas-Sánchez, J.-C.; Oyarzún, S.; Fu, Y.; Marty, A.; Vergnaud, C.; Gambarelli, S.; Vila, L.; Jamet, M.; Ohtsubo, Y.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Reyren, N.; George, J.-M.; Fert, A. Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films. Phys. Rev. Lett. 2016, 116, 096602, 10.1103/PhysRevLett.116.096602
20. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 2016, 15, 1261-1266, 10.1038/nmat4726
21. Rodriguez-Vega, M.; Schwiete, G.; Sinova, J.; Rossi, E. Giant Edelstein effect in topological-insulator-graphene heterostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 235419, 10.1103/PhysRevB.96.235419
22. Ghiasi, T. S.; Kaverzin, A. A.; Blah, P. J.; van Wees, B. J. Charge-to-Spin Conversion by the Rashba-Edelstein Effect in Two-Dimensional van der Waals Heterostructures up to Room Temperature. Nano Lett. 2019, 19, 5959-5966, 10.1021/acs.nanolett.9b01611
23. Benítez, L. A.; Torres, W. S.; Sierra, J. F.; Timmermans, M.; Garcia, J. H.; Roche, S.; Costache, M. V.; Valenzuela, S. O. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 2020, 19, 170-175, 10.1038/s41563-019-0575-1
24. Vaklinova, K.; Hoyer, A.; Burghard, M.; Kern, K. Current-Induced Spin Polarization in Topological Insulator-Graphene Heterostructures. Nano Lett. 2016, 16, 2595-2602, 10.1021/acs.nanolett.6b00167
25. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 2011, 10, 521-6, 10.1038/nmat3051
26. Bahramy, M. S.; Arita, R.; Nagaosa, N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 041202, 10.1103/PhysRevB.84.041202
27. Eremeev, S. V.; Rusinov, I. P.; Nechaev, I. A.; Chulkov, E. V. Rashba split surface states in BiTeBr. New J. Phys. 2013, 15, 075015, 10.1088/1367-2630/15/7/075015
28. Maaß, H.; Bentmann, H.; Seibel, C.; Tusche, C.; Eremeev, S. V.; Peixoto, T. R. F.; Tereshchenko, O. E.; Kokh, K. A.; Chulkov, E. V.; Kirschner, J.; Reinert, F. Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 2016, 7, 11621, 10.1038/ncomms11621
29. Xin, J.; Fu, C.-G.; Shi, W.-J.; Li, G.-W.; Auffermann, G.; Qi, Y.-P.; Zhu, T.-J.; Zhao, X.-B.; Felser, C. Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture. Rare Met. 2018, 37, 274, 10.1007/s12598-018-1027-9
30. Sakano, M.; Bahramy, M. S.; Katayama, A.; Shimojima, T.; Murakawa, H.; Kaneko, Y.; Malaeb, W.; Shin, S.; Ono, K.; Kumigashira, H.; Arita, R.; Nagaosa, N.; Hwang, H. Y.; Tokura, Y.; Ishizaka, K. Strongly Spin-Orbit Coupled Two-Dimensional Electron Gas Emerging near the Surface of Polar Semiconductors. Phys. Rev. Lett. 2013, 110, 107204, 10.1103/PhysRevLett.110.107204
31. Akrap, A.; Teyssier, J.; Magrez, A.; Bugnon, P.; Berger, H.; Kuzmenko, A. B.; van der Marel, D. Optical properties of BiTeBr and BiTeCl. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 035201, 10.1103/PhysRevB.90.035201
32. Martin, C.; Suslov, A. V.; Buvaev, S.; Hebard, A. F.; Bugnon, P.; Berger, H.; Magrez, A.; Tanner, D. B. Experimental determination of the bulk Rashba parameters in BiTeBr. Europhys. Lett. 2016, 116, 57003, 10.1209/0295-5075/116/57003
33. Ideue, T.; Hamamoto, K.; Koshikawa, S.; Ezawa, M.; Shimizu, S.; Kaneko, Y.; Tokura, Y.; Nagaosa, N.; Iwasa, Y. Bulk rectification effect in a polar semiconductor. Nat. Phys. 2017, 13, 578-583, 10.1038/nphys4056
34. Bahramy, M.; Yang, B.-J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679, 10.1038/ncomms1679
35. Chen, Y.; Xi, X.; Yim, W.-L.; Peng, F.; Wang, Y.; Wang, H.; ma, Y.; Liu, G.; Sun, C.; Ma, C.; Chen, Z.; Berger, H. High-Pressure Phase Transitions and Structures of Topological Insulator BiTeI. J. Phys. Chem. C 2013, 117, 25677-25683, 10.1021/jp409824g
36. Crassee, I.; Borondics, F.; Tran, M. K.; Autès, G.; Magrez, A.; Bugnon, P.; Berger, H.; Teyssier, J.; Yazyev, O. V.; Orlita, M. et al. BiTeCl and BiTeBr: A comparative high-pressure optical study. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 95, 045201, 10.1103/PhysRevB.95.045201
37. Rusinov, I.; Menshchikova, T.; Sklyadneva, I.; Heid, R.; Bohnen, K.; Chulkov, E. Pressure effects on crystal and electronic structure of bismuth tellurohalides. New J. Phys. 2016, 18, 113003, 10.1088/1367-2630/18/11/113003
38. Ohmura, A.; Higuchi, Y.; Ochiai, T.; Kanou, M.; Nakano, S.; Ishikawa, F.; Nakayama, A.; Yamada, Y.; Sasagawa, T. Investigation of topological phase transition in BiTeBr under high pressure. J. Phys.: Conf. Ser. 2017, 950, 042036, 10.1088/1742-6596/950/4/042036
39. Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q. Superconductivity Bordering Rashba Type Topological Transition. Sci. Rep. 2017, 7, 39699, 10.1038/srep39699
40. Jin, M.; Zhang, S.; Xing, L.; Li, W.; Zhao, G.; Wang, X.; Long, Y.; Li, X.; Bai, H.; Gu, C.; Jin, C. Pressure-induced superconductivity and quantum phase transitions in the Rashba material BiTeCl. J. Phys. Chem. Solids 2019, 128, 211-217, 10.1016/j.jpcs.2017.09.024
41. Bawden, L.; Riley, J. M.; Kim, C. H.; Sankar, R.; Monkman, E. J.; Shai, D. E.; Wei, H. I.; Lochocki, E. B.; Wells, J. W.; Meevasana, W. et al. Hierarchical spin-orbital polarization of a giant Rashba system. Science Advances 2015, 1, e1500495 10.1126/sciadv.1500495
42. Shevelkov, A.; Dikarev, E.; Shpanchenko, R.; Popovkin, B. Crystal Structures of Bismuth Tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Diffraction Data. J. Solid State Chem. 1995, 114, 379-384, 10.1006/jssc.1995.1058
43. Aronov, A.; Lyanda-Geller, Y.; Pikus, G. Spin polarization of electrons by an electric current. Sov. Phys. JETP 1991, 73, 537-541
44. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 1990, 73, 233-235, 10.1016/0038-1098(90)90963-C
45. Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794-807, 10.1038/nnano.2014.214
46. Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571-574, 10.1038/nature06037
47. Dery, H.; Wu, H.; Ciftcioglu, B.; Huang, M.; Song, Y.; Kawakami, R.; Shi, J.; Krivorotov, I.; Zutic, I.; Sham, L. J. Nanospintronics Based on Magnetologic Gates. IEEE Trans. Electron Devices 2012, 59, 259-262, 10.1109/TED.2011.2173498
48. Popinciuc, M.; Józsa, C.; Zomer, P. J.; Tombros, N.; Veligura, A.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport in graphene field-effect transistors. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 214427, 10.1103/PhysRevB.80.214427
49. Han, W.; Pi, K.; McCreary, K. M.; Li, Y.; Wong, J. J. I.; Swartz, A. G.; Kawakami, R. K. Tunneling Spin Injection into Single Layer Graphene. Phys. Rev. Lett. 2010, 105, 167202, 10.1103/PhysRevLett.105.167202
50. Han, W.; McCreary, K.; Pi, K.; Wang, W.; Li, Y.; Wen, H.; Chen, J.; Kawakami, R. Spin transport and relaxation in graphene. J. Magn. Magn. Mater. 2012, 324, 369-381, 10.1016/j.jmmm.2011.08.001
51. Roche, S.; Valenzuela, S. O. Graphene spintronics: puzzling controversies and challenges for spin manipulation. J. Phys. D: Appl. Phys. 2014, 47, 094011, 10.1088/0022-3727/47/9/094011
52. Drögeler, M.; Volmer, F.; Wolter, M.; Terrés, B.; Watanabe, K.; Taniguchi, T.; Güntherodt, G.; Stampfer, C.; Beschoten, B. Nanosecond Spin Lifetimes in Single-and Few-Layer Graphene-hBN Heterostructures at Room Temperature. Nano Lett. 2014, 14, 6050-6055, 10.1021/nl501278c
53. Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571-574, 10.1038/nature06037
54. Jedema, F. J.; Costache, M. V.; Heersche, H. B.; Baselmans, J. J. A.; van Wees, B. J. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves. Appl. Phys. Lett. 2002, 81, 5162-5164, 10.1063/1.1532753
55. Sosenko, E.; Wei, H.; Aji, V. Effect of contacts on spin lifetime measurements in graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 245436, 10.1103/PhysRevB.89.245436
56. Han, W.; Pi, K.; Bao, W.; McCreary, K. M.; Li, Y.; Wang, W. H.; Lau, C. N.; Kawakami, R. K. Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl. Phys. Lett. 2009, 94, 222109, 10.1063/1.3147203
57. Schmidt, G.; Ferrand, D.; Molenkamp, L. W.; Filip, A. T.; van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, R4790-R4793, 10.1103/PhysRevB.62.R4790
58. Fert, A.; Jaffres, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64, 184420, 10.1103/PhysRevB.64.184420
59. Valet, T.; Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 7099-7113, 10.1103/PhysRevB.48.7099
60. Vignale, G. Ten Years of Spin Hall Effect. J. Supercond. Novel Magn. 2010, 23, 3, 10.1007/s10948-009-0547-9
61. Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O'Farrell, E. et al. Spin-orbit proximity effect in graphene. Nat. Commun. 2014, 5, 4875, 10.1038/ncomms5875
62. Garcia, J. H.; Cummings, A. W.; Roche, S. Spin Hall Effect and Weak Antilocalization in Graphene/Transition Metal Dichalcogenide Heterostructures. Nano Lett. 2017, 17, 5078-5083, 10.1021/acs.nanolett.7b02364
63. Dyakonov, M. I. Spin Hall Effect. Future Trends in Microelectronics 2010, 251-263, 10.1002/9780470649343.ch21
64. Milletarl`, M.; Offidani, M.; Ferreira, A.; Raimondi, R. Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems. Phys. Rev. Lett. 2017, 119, 246801, 10.1103/PhysRevLett.119.246801
65. Sanchez, J. C. R.; Vila, L.; Desfonds, G.; Gambarelli, S.; Attane, J. P.; De Teresa, J. M.; Magen, C.; Fert, A. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 2013, 4, 2944, 10.1038/ncomms3944
66. Isasa, M.; Martínez-Velarte, M. C.; Villamor, E.; Magén, C.; Morellón, L.; De Teresa, J. M.; Ibarra, M. R.; Vignale, G.; Chulkov, E. V.; Krasovskii, E. E. et al. Origin of inverse Rashba-Edelstein effect detected at the Cu/Bi interface using lateral spin valves. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 014420, 10.1103/PhysRevB.93.014420
67. Auvray, F.; Puebla, J.; Xu, M.; Rana, B.; Hashizume, D.; Otani, Y. Spin accumulation at nonmagnetic interface induced by direct Rashba-Edelstein effect. J. Mater. Sci.: Mater. Electron. 2018, 29, 15664-15670, 10.1007/s10854-018-9162-5
68. Du, Y.; Karube, S.; Gamou, H.; Ryu, J.; Takahashi, S.; Kohda, M.; Nitta, J. Anomalous spin orbit torques with large Rashba spin orbit coupling in epitaxial Pt/Co bilayers. 2018, arXiv:1807.10867. arXiv.org e-Print archive. https://arxiv.org/abs/1807.10867 (accessed Jun 03, 2020).
69. Avsar, A.; Unuchek, D.; Liu, J.; Sanchez, O. L.; Watanabe, K.; Taniguchi, T.; Özyilmaz, B.; Kis, A. Optospintronics in Graphene via Proximity Coupling. ACS Nano 2017, 11, 11678-11686, 10.1021/acsnano.7b06800
70. Hoque, A.; Khokhriakov, D.; Karpiak, B.; Dash, S. All-electrical creation and control of giant spin-galvanic effect in 1T-MoTe2/graphene heterostructures at room temperature. 2019, arXiv:1908.09367. arXiv.org e-Print archive. https://arxiv.org/abs/1908.09367 (accessed Jun 03, 2020).
71. Safeer, C. K.; Ontoso, N.; Ingla-Aynés, J.; Herling, F.; Pham, V. T.; Kurzmann, A.; Ensslin, K.; Chuvilin, A.; Robredo, I.; Vergniory, M. G.; de Juan, F.; Hueso, L. E.; Calvo, M. R.; Casanova, F. Large multi-directional spin-to-charge conversion in low symmetry semimetal MoTe2at room temperature. Nano Lett. 2019, 19, 8758-8766, 10.1021/acs.nanolett.9b03485
72. Li, L.; Zhang, J.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Kim, S.; Jin, T.; Cavill, S.; Kim, B. S.; Kim, C.; Lischner, J.; Ferreira, A.; Cho, S. Gate-Tunable Reversible Rashba-Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature. ACS Nano 2020, 14, 5251-5259, 10.1021/acsnano.0c01037
73. Khokhriakov, D.; Hoque, A. M.; Karpiak, B.; Dash, S. P. Giant and Gate-tunable Spin-Galvanic Effect in Graphene Topological insulator van der Waals Heterostructures at Room Temperature. 2019, arXiv:1910.06760. arXiv.org e-Print archive. https://arxiv.org/abs/1910.06760 (accessed Jun 03, 2020).
74. Dyrdał, A.; Barnaś, J.; Dugaev, V. K. Current-induced spin polarization in graphene due to Rashba spin-orbit interaction. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 075422, 10.1103/PhysRevB.89.075422
75. Offidani, M.; Milletarl`, M.; Raimondi, R.; Ferreira, A. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides. Phys. Rev. Lett. 2017, 119, 196801, 10.1103/PhysRevLett.119.196801
76. Kanou, M.; Sasagawa, T. Crystal growth and electronic properties of a 3D Rashba material, BiTeI, with adjusted carrier concentrations. J. Phys.: Condens. Matter 2013, 25, 135801, 10.1088/0953-8984/25/13/135801
77. Fülöp, B.; Tajkov, Z.; Petö, J.; Kun, P.; Koltai, J.; Oroszlány, L.; Tóvári, E.; Murakawa, H.; Tokura, Y.; Bordács, S.; Tapasztó, L.; Csonka, S. Exfoliation of single layer BiTeI flakes. 2D Mater. 2018, 5, 031013, 10.1088/2053-1583/aac652
|