Инд. авторы: Sinyakova E.F., Komarov V.Y., Sopov K.V., Kosyakov V.I., Kokh K.A.
Заглавие: Crystallization of pyrrhotite from Fe-Ni-Cu-S-(Rh, Ru) melt
Библ. ссылка: Sinyakova E.F., Komarov V.Y., Sopov K.V., Kosyakov V.I., Kokh K.A. Crystallization of pyrrhotite from Fe-Ni-Cu-S-(Rh, Ru) melt // Journal of Crystal Growth. - 2020. - Vol.548. - Art.125822. - ISSN 0022-0248. - EISSN 1873-5002.
Внешние системы: DOI: 10.1016/j.jcrysgro.2020.125822; РИНЦ: 45390481; SCOPUS: 2-s2.0-85088921945; WoS: 000571816900009;
Реферат: eng: We have studied the composition and structure of the products of initial crystallization stage of melt with the following composition (in mol. %): Fe 31.90, Cu 16.03, Ni 1.70, S 50.31, and by 0.03 Ru and Rh. Directional solidification of the sample was carried out in the region of primary crystallization of pyrrhotite solid solution (Poss) in the Fe-Cu-Ni-S system. Results of optical microscopy and SEM-EDS showed that the distribution of the main components and Rh in the sample agrees with the theory of directed crystallization. Refractory ruthenium sulfide RuS2 (structure type FeS2, pyrite), formed in the sulfide melt, plays the part of mechanical dopant. On cooling of the crystallized sample, Poss partly decomposes to form nonstoichiometric isocubanite Cu1.1Fe2S3 (Icb*). On further cooling, Icb* decomposes into stoichiometric isocubanite CuFe2S3 (Icb) and Cu3Fe4S7 phase. These phase reactions do not influence the distribution of Rh and Ru in the sample volume. Crystallographic parameters, features of modulation and spatial orientation of pyrrhotite and cubanite phases of sulfide matrix were determined. © 2020 Elsevier B.V.
Ключевые слова: Structure type; Spatial orientations; Primary crystallization; Phase reaction; Non-stoichiometric; Directed crystallization; Crystallographic parameters; Crystallization stage; Sulfur compounds; Pyrites; Nickel compounds; Copper compounds; B1. Pyrrhotite solid solution; B1. Cu-Fe-Ni-S-(Rh, Ru) system; A1. High-resolution powder XRD; A1. Directional solidification; A1. 3D reciprocal space analysis; Rhodium metallography; Ruthenium compounds;
Издано: 2020
Физ. характеристика: 125822
Цитирование: 1. Pearce, C.I., Pattrick, R.A.D., Vaughan, D.J., Electrical and magnetic properties of sulfides. Rev. Mineral. Geochem. 61 (2006), 127–180, 10.2138/rmg.2006.61.3. 2. Kosyakov, V.I., Sinyakova, E.F., Physicochemical prerequisites for the formation of primary orebody zoning at copper-nickel sulfide deposits (by the example of the systems Fe–Ni–S and Cu–Fe–S). Russ. Geol. Geophys. 53 (2012), 861–882, 10.1016/j.rgg.2012.07.003. 3. Kosyakov, V.I., Sinyakova, E.F., Peculiarities of behavior of trace elements during fractional crystallization of sulfide magmas. Dokl. Earth Sci. 460 (2015), 179–182, 10.1134/S1028334X1502021X. 4. Sinyakova, E.F., Kosyakov, V.I., Distler, V.V., Karmanov, N.S., Behavior of Pt, Pd, and Au during crystallization of Cu-rich magmatic sulfides. Can. Mineral., 54, 2016, 10.3749/canmin.1500015. 5. Sinyakova, E., Kosyakov, V., Palyanova, G., Karmanov, N., Experimental modeling of noble and chalcophile elements fractionation during solidification of Cu-Fe-Ni-S melt. Minerals, 9(9), 2019, 531, 10.3390/min9090531. 6. Moller, G., Convection and inhomogeneities in crystal growth from the melt. Crystals (growth, properties, and applications). 1988, Springer-Verlag, Yeidelberg 10.1002/crat.2170240129. 7. Sellamuthu, R., Goldstein, J.I., Measurement and analysis of distribution coefficients in Fe-Ni-alloys containing S and/or P: Part I. KNi and KP. Metall. Trans. 15A (1984), 1677–1685, 10.1007/BF02666351. 8. Kosyakov, V.I., Sinyakova, E.F., Directional crystallization of Fe–Ni sulfide melts within the crystallization field of monosulfide solid solution. Geochem. Int. 43:4 (2005), 372–385. 9. Hodeau, J.L., Bordet, P., Anne, M., Prat, A., Fitch, A.N., Dooryhée, E., Vaughan, G., Freund, A., Nine crystal multi-analyser stage for high resolution powder diffraction between 6 and 4OkeV. SPIE 3448 (1998), 353–361. 10. Wright, J.P., Vaughan, G.B.M., Fitch, A.N., Merging data from a multi-detector continuous scanning powder diffraction system IUCr. Comput. Commission Newsletter, 1, 2003, 92. 11. Coelho, A., TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51 (2018), 210–218, 10.1107/S1600576718000183. 12. Mikheev, V.I., X-ray determinant of minerals. 1957, Geologiya i okhrana nedr, Moscow (in Russ.). 13. Bruker AXS Inc. (2000-2012). APEX2 (Version 2.0), SAINT (Version 8.18c), and SADABS (Version 2.11), Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA. 14. Sheldrick, G.M., A short history of SHELX Acta Crystallogr. A 64 (2008), 112–122, 10.1107/S0108767307043930. 15. K.V. Sopov, S.E. Kireev, V.Yu. Komarov, XRDoll – A program for 3D reciprocal space reconstructing using 2D XRD data, (2017-2019). 16. Sinyakova, E.F., Kosyakov, V.I., Kokh, K.A., Naumov, E.A., Sequential crystallization of pyrrhotite, cubanite and intermediate solid solution from Cu-Fe-(Ni)-S melt. Russ. Geol. Geophys. 60:11 (2019), 1257–1267, 10.15372/RGG2019091. 17. Czamanske, G.K., Kunilov, V.E., Zientek, M.L., Cabri, L.J., Calk, L.C., Likhachev, A.P., A proton-microprobe study of sulfide ores from the Noril'sk-Talnakh district, Siberia. Can. Min. 30 (1992), 249–287. 18. Caye, R., Cervelle, B., Cesbron, F., Oudin, E., Picot, P., Pillard, F., Isocubanite, a new definition of the cubic polymorph of cubanite CuFe2S3. Min. Mag. 52 (1988), 509–514. 19. Cabri, L.J., New data on phase relations in the Cu-Fe-S system. Econ. Geol. 68 (1973), 443–454, 10.2113/gsecongeo.68.4.443. 20. Cabri, L.J., Hall, S.R., Szymanski, J.T., Stewart, J.M., On the transformation of cubanite. Can. Min. 12 (1973), 33–38. 21. MacLean, W.H., Cabri, L.J., Gill, J.E., Exsolution Products in Heated Chalcopyrite. Can. J. Earth Sci. 9:10 (1972), 1305–1317, 10.1139/e72-114. 22. Pruseth, K.L., Mishra, B., Bernhardt, H.-J., An experimental study on cubanite irreversibility: implications for natural chalcopyrite-cubanite intergrowth. Eur. J. Min. 11 (1999), 474–476, 10.1127/ejm/11/3/0471. 23. Sugaki, A., Shima, A., Kitakaze, A., Harada, H., Isothermal phase relation in the system Cu-Fe-S under hydrothermal conditions at 350°C and 300°C. Econ. Geol. 70 (1975), 806–823, 10.2113/gsecongeo.70.4.806. 24. Kosyakov, V.I., Sinyakova, E.F., Melt Crystallization of CuFe2S3 in the Cu–Fe–S system. J. Therm. Anal. Calorim. 115 (2014), 511–516, 10.1007/s10973-013-3206-0. 25. Kosyakov, V.I., Sinyakova, E.F., Study of crystallization of nonstoichiometric isocubanite Cu1.1Fe2.0S3.0 from melt in the system Cu–Fe–S. J. Therm. Anal. Calorim. 129 (2017), 623–628, 10.1007/s10973-017-6215-6. 26. Nakano, A., Tokonami, M., Morimoto, N., Refinement of 3C Pyrrotite, Fe7S8. Acta Crystallogr. B 35 (1979), 722–724, 10.1107/S0567740879004532. 27. Fleet, M.E., Chryssoulis, S.L., Stone, W.E., Weisener, C.G., Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt. Contrib. Mineral. Petrol. 115 (1993), 36–44, 10.1007/BF00712976. 28. Li, C., Barnes, S.-J., Makovicky, E., Rose-Hansen, J., Makovicky, M., Partitioning of nickel, cooper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochim. Cosmochim. Acta 60:7 (1996), 1231–1238, 10.1016/0016-7037(96)00009-9. 29. Barnes, S.-J., Makovicky, E., Makovicky, M., Rose-Hansen, J., Karup-Moller, S., Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni – Cu sulfide bodies by fractional crystallization of sulfide liquid. Can. J. Earth Sci. 34:4 (1997), 366–374, 10.1139/e17-032. 30. Ballhaus, C., Tredoux, M., Spath, A., Phase relations in the Fe–Ni–Cu–PGE–S system at magmatic temperature and application to massive sulphide ores of the Sudbury Igneous Complex. Petrology 42:10 (2001), 1911–1926, 10.1093/petrology/42.10.1911. 31. Mungall, J.E., Andrews, D.R.A., Cabri, L.J., Sylvester, P.J., Tubrett, M., Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim. Cosmochim. Acta 69:17 (2005), 4349–4360, 10.1016/j.gca.2004.11.025. 32. Sinyakova, E.F., Kosyakov, V.I., Kolonin, G.R., Behavior of PGE on crystallization of melts of the system Fe–Ni–S FexNi0.49-xS0.51 section. Russian Geol. Geophys. 9 (2001), 1287–1304. 33. Cabri, J., The distribution of trace precious metals in minerals and mineral products. The 23rd Hallimond Lecture. Mineralog. Magazine 56 (1992), 298–308, 10.1180/minmag.1992.056.384.01. 34. Cabri, L.J., Sylvester, P.J., Tubrett, M.N., Peregoedova, A., Laflamme, J.H.G., Comparison of LAM–ICP–MS and MICRO-PIXE results for palladium and rhodium in select samples of Noril'sk and Talnakh sulfides. Can. Min. 41 (2003), 321–329, 10.2113/gscanmin.41.2.321. 35. Yang, Z., Jackson, S.E., Cabri, L.J., Wee, P., Longerich, H.P., Pawlak, M., Quantitative determination of trace level (ng g−1) contents of rhodium and palladium in copper-rich minerals using LA-ICP-MS. J. Anal. At. Spectrom. 35 (2020), 534–547, 10.1039/C9JA00285EL. 36. S.-J. Barnes, E.M. Ripley, Highly siderophile and strongly chalcophile elements in magmatic ore deposits. In Highly siderophile and strongly chalcophile elements in high temperature geochemistry and cosmochemistry (J. Havey, J.M. Day, ed.), Rev. Mineral. Geochem. 81 (2016) 725–774. DOI: 10.2138/rmg.2016.81.12. 37. Brenan, J.M., Andrews, D., High-temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in mafic magmas. Can. Min. 39 (2001), 341–360, 10.2113/gscanmin.39.2.341. 38. Andrews, D.R.A., Brenan, J.M., Phase-equilibrium constraints of the magmatic origin of laurite + Ru–Os–Ir alloy. Can. Min. 40 (2002), 1705–1716, 10.2113/gscanmin.40.6.1705.