Цитирование: | 1. Pearce, C.I., Pattrick, R.A.D., Vaughan, D.J., Electrical and magnetic properties of sulfides. Rev. Mineral. Geochem. 61 (2006), 127–180, 10.2138/rmg.2006.61.3.
2. Kosyakov, V.I., Sinyakova, E.F., Physicochemical prerequisites for the formation of primary orebody zoning at copper-nickel sulfide deposits (by the example of the systems Fe–Ni–S and Cu–Fe–S). Russ. Geol. Geophys. 53 (2012), 861–882, 10.1016/j.rgg.2012.07.003.
3. Kosyakov, V.I., Sinyakova, E.F., Peculiarities of behavior of trace elements during fractional crystallization of sulfide magmas. Dokl. Earth Sci. 460 (2015), 179–182, 10.1134/S1028334X1502021X.
4. Sinyakova, E.F., Kosyakov, V.I., Distler, V.V., Karmanov, N.S., Behavior of Pt, Pd, and Au during crystallization of Cu-rich magmatic sulfides. Can. Mineral., 54, 2016, 10.3749/canmin.1500015.
5. Sinyakova, E., Kosyakov, V., Palyanova, G., Karmanov, N., Experimental modeling of noble and chalcophile elements fractionation during solidification of Cu-Fe-Ni-S melt. Minerals, 9(9), 2019, 531, 10.3390/min9090531.
6. Moller, G., Convection and inhomogeneities in crystal growth from the melt. Crystals (growth, properties, and applications). 1988, Springer-Verlag, Yeidelberg 10.1002/crat.2170240129.
7. Sellamuthu, R., Goldstein, J.I., Measurement and analysis of distribution coefficients in Fe-Ni-alloys containing S and/or P: Part I. KNi and KP. Metall. Trans. 15A (1984), 1677–1685, 10.1007/BF02666351.
8. Kosyakov, V.I., Sinyakova, E.F., Directional crystallization of Fe–Ni sulfide melts within the crystallization field of monosulfide solid solution. Geochem. Int. 43:4 (2005), 372–385.
9. Hodeau, J.L., Bordet, P., Anne, M., Prat, A., Fitch, A.N., Dooryhée, E., Vaughan, G., Freund, A., Nine crystal multi-analyser stage for high resolution powder diffraction between 6 and 4OkeV. SPIE 3448 (1998), 353–361.
10. Wright, J.P., Vaughan, G.B.M., Fitch, A.N., Merging data from a multi-detector continuous scanning powder diffraction system IUCr. Comput. Commission Newsletter, 1, 2003, 92.
11. Coelho, A., TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51 (2018), 210–218, 10.1107/S1600576718000183.
12. Mikheev, V.I., X-ray determinant of minerals. 1957, Geologiya i okhrana nedr, Moscow (in Russ.).
13. Bruker AXS Inc. (2000-2012). APEX2 (Version 2.0), SAINT (Version 8.18c), and SADABS (Version 2.11), Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
14. Sheldrick, G.M., A short history of SHELX Acta Crystallogr. A 64 (2008), 112–122, 10.1107/S0108767307043930.
15. K.V. Sopov, S.E. Kireev, V.Yu. Komarov, XRDoll – A program for 3D reciprocal space reconstructing using 2D XRD data, (2017-2019).
16. Sinyakova, E.F., Kosyakov, V.I., Kokh, K.A., Naumov, E.A., Sequential crystallization of pyrrhotite, cubanite and intermediate solid solution from Cu-Fe-(Ni)-S melt. Russ. Geol. Geophys. 60:11 (2019), 1257–1267, 10.15372/RGG2019091.
17. Czamanske, G.K., Kunilov, V.E., Zientek, M.L., Cabri, L.J., Calk, L.C., Likhachev, A.P., A proton-microprobe study of sulfide ores from the Noril'sk-Talnakh district, Siberia. Can. Min. 30 (1992), 249–287.
18. Caye, R., Cervelle, B., Cesbron, F., Oudin, E., Picot, P., Pillard, F., Isocubanite, a new definition of the cubic polymorph of cubanite CuFe2S3. Min. Mag. 52 (1988), 509–514.
19. Cabri, L.J., New data on phase relations in the Cu-Fe-S system. Econ. Geol. 68 (1973), 443–454, 10.2113/gsecongeo.68.4.443.
20. Cabri, L.J., Hall, S.R., Szymanski, J.T., Stewart, J.M., On the transformation of cubanite. Can. Min. 12 (1973), 33–38.
21. MacLean, W.H., Cabri, L.J., Gill, J.E., Exsolution Products in Heated Chalcopyrite. Can. J. Earth Sci. 9:10 (1972), 1305–1317, 10.1139/e72-114.
22. Pruseth, K.L., Mishra, B., Bernhardt, H.-J., An experimental study on cubanite irreversibility: implications for natural chalcopyrite-cubanite intergrowth. Eur. J. Min. 11 (1999), 474–476, 10.1127/ejm/11/3/0471.
23. Sugaki, A., Shima, A., Kitakaze, A., Harada, H., Isothermal phase relation in the system Cu-Fe-S under hydrothermal conditions at 350°C and 300°C. Econ. Geol. 70 (1975), 806–823, 10.2113/gsecongeo.70.4.806.
24. Kosyakov, V.I., Sinyakova, E.F., Melt Crystallization of CuFe2S3 in the Cu–Fe–S system. J. Therm. Anal. Calorim. 115 (2014), 511–516, 10.1007/s10973-013-3206-0.
25. Kosyakov, V.I., Sinyakova, E.F., Study of crystallization of nonstoichiometric isocubanite Cu1.1Fe2.0S3.0 from melt in the system Cu–Fe–S. J. Therm. Anal. Calorim. 129 (2017), 623–628, 10.1007/s10973-017-6215-6.
26. Nakano, A., Tokonami, M., Morimoto, N., Refinement of 3C Pyrrotite, Fe7S8. Acta Crystallogr. B 35 (1979), 722–724, 10.1107/S0567740879004532.
27. Fleet, M.E., Chryssoulis, S.L., Stone, W.E., Weisener, C.G., Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt. Contrib. Mineral. Petrol. 115 (1993), 36–44, 10.1007/BF00712976.
28. Li, C., Barnes, S.-J., Makovicky, E., Rose-Hansen, J., Makovicky, M., Partitioning of nickel, cooper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochim. Cosmochim. Acta 60:7 (1996), 1231–1238, 10.1016/0016-7037(96)00009-9.
29. Barnes, S.-J., Makovicky, E., Makovicky, M., Rose-Hansen, J., Karup-Moller, S., Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni – Cu sulfide bodies by fractional crystallization of sulfide liquid. Can. J. Earth Sci. 34:4 (1997), 366–374, 10.1139/e17-032.
30. Ballhaus, C., Tredoux, M., Spath, A., Phase relations in the Fe–Ni–Cu–PGE–S system at magmatic temperature and application to massive sulphide ores of the Sudbury Igneous Complex. Petrology 42:10 (2001), 1911–1926, 10.1093/petrology/42.10.1911.
31. Mungall, J.E., Andrews, D.R.A., Cabri, L.J., Sylvester, P.J., Tubrett, M., Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim. Cosmochim. Acta 69:17 (2005), 4349–4360, 10.1016/j.gca.2004.11.025.
32. Sinyakova, E.F., Kosyakov, V.I., Kolonin, G.R., Behavior of PGE on crystallization of melts of the system Fe–Ni–S FexNi0.49-xS0.51 section. Russian Geol. Geophys. 9 (2001), 1287–1304.
33. Cabri, J., The distribution of trace precious metals in minerals and mineral products. The 23rd Hallimond Lecture. Mineralog. Magazine 56 (1992), 298–308, 10.1180/minmag.1992.056.384.01.
34. Cabri, L.J., Sylvester, P.J., Tubrett, M.N., Peregoedova, A., Laflamme, J.H.G., Comparison of LAM–ICP–MS and MICRO-PIXE results for palladium and rhodium in select samples of Noril'sk and Talnakh sulfides. Can. Min. 41 (2003), 321–329, 10.2113/gscanmin.41.2.321.
35. Yang, Z., Jackson, S.E., Cabri, L.J., Wee, P., Longerich, H.P., Pawlak, M., Quantitative determination of trace level (ng g−1) contents of rhodium and palladium in copper-rich minerals using LA-ICP-MS. J. Anal. At. Spectrom. 35 (2020), 534–547, 10.1039/C9JA00285EL.
36. S.-J. Barnes, E.M. Ripley, Highly siderophile and strongly chalcophile elements in magmatic ore deposits. In Highly siderophile and strongly chalcophile elements in high temperature geochemistry and cosmochemistry (J. Havey, J.M. Day, ed.), Rev. Mineral. Geochem. 81 (2016) 725–774. DOI: 10.2138/rmg.2016.81.12.
37. Brenan, J.M., Andrews, D., High-temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in mafic magmas. Can. Min. 39 (2001), 341–360, 10.2113/gscanmin.39.2.341.
38. Andrews, D.R.A., Brenan, J.M., Phase-equilibrium constraints of the magmatic origin of laurite + Ru–Os–Ir alloy. Can. Min. 40 (2002), 1705–1716, 10.2113/gscanmin.40.6.1705.
|