Инд. авторы: Kostin V.I., Solov'ev S.A.
Заглавие: Optimization of a Finite-Difference Scheme for Numerical Solution of the Helmholtz Equation
Библ. ссылка: Kostin V.I., Solov'ev S.A. Optimization of a Finite-Difference Scheme for Numerical Solution of the Helmholtz Equation // Computational Mathematics and Mathematical Physics. - 2020. - Vol.60. - Iss. 4. - P.641-650. - ISSN 0965-5425. - EISSN 1555-6662.
Внешние системы: DOI: 10.1134/S0965542520040119; WoS: 000539033500010;
Реферат: eng: In this article, we propose an optimization method for a difference scheme for the numerical solution of the Helmholtz equation, applicable for any ratio of the grid steps. In the range of the number of points per wavelength of practical interest, the dispersion error of the optimal scheme is comparable with the error of higher order schemes known in the literature.
Ключевые слова: MEAD SIMPLEX-METHOD; optimization; 9-POINT; finite-difference schemes; Helmholtz equation; numerical dispersion; CONVERGENCE;
Издано: 2020
Физ. характеристика: с.641-650