Инд. авторы: | Кирдяшкин А.Г., Кирдяшкин А.А., Дистанов В.Э., Гладков И.Н. |
Заглавие: | Геодинамические процессы в период подъема плюма промежуточной тепловой мощности в литосфере континента и при его прорыве на поверхность |
Библ. ссылка: | Кирдяшкин А.Г., Кирдяшкин А.А., Дистанов В.Э., Гладков И.Н. Геодинамические процессы в период подъема плюма промежуточной тепловой мощности в литосфере континента и при его прорыве на поверхность // Геодинамика и тектонофизика. - 2020. - Т.11. - № 2. - С.397-416. - EISSN 2078-502X. |
Внешние системы: | DOI: 10.5800/GT-2020-11-2-0482; РИНЦ: 42989227; SCOPUS: 2-s2.0-85091375063; WoS: 000543258800013; |
Реферат: | rus: Рассматриваются мантийные термохимические плюмы промежуточной тепловой мощности (1.15 eng: The study is focused on thermochemical mantle plumes with intermediate thermal power (1.15 < Ka < 1.9). Previously we have shown that these plumes are diamondiferous. Based on the laboratory modeling data, the flow structure of a melt in a plume conduit is represented. A plume melts out and ascends from the core - mantle boundary to the bottom of the continental lithosphere. The plume roof moves upwards in the lithosphere because of melting of the lithospheric matter at the plume roof and due to the effect of superlithostatic pressure on the roof, which causes motion in the lithosphere block above the plume roof. The latter manifests itself by uplifting of the ground surface above the plume. As the plume ascends through the lithosphere, the elevation of the surface increases until the plume ascends to critical level xкр, where an eruption conduit is formed. In our model, plume ascent velocity uпл is the rate of melting at the plume roof. Values of uпл and the ascent velocity of a spherical plume roof due to superlithostatic pressure U are calculated. Relationships are found between these velocities and the plume roof depth. The dependence of the velocity of the surface’s rise on the dynamic viscosity of the lithosphere block above the plume is obtained. A relationship is determined between the maximum surface elevation and the lithosphere viscosity. The elevation values are determined for different times and different lithosphere viscosities.The results of laboratory modeling of flow structure at the plume conduit/eruption conduit interface are presented. The flow was photographed (1) in the plane passing through the axes of the plume conduit and the eruption conduit; and (2) in case of the line-focus beam perpendicular to the axial plane. The photographs were used for measuring the flow velocities in the plume conduit and the eruption conduit. Corresponding Reynolds numbers and flow regimes are determined. The relation of dynamic pressure in the eruption conduit to that in the plume conduit is found for intermediate-power plumes. The melt flow velocity in the eruption conduit depends on superlithostatic pressure on the plume roof, plume diameter and kinematic viscosity of the melt. Its values are determined for different kinematic viscosities of melt. |
Ключевые слова: | THERMOCHEMICAL PLUMES; MANTLE PLUMES; flow velocity; kinematic viscosity; melt; eruption conduit; surface elevation; ascent velocity; superlithostatic pressure; plume roof; plume conduit; thermal power; thermochemical plume; Thermochemical plume; thermal power; Plume conduit; plume roof; superlithostatic pressure; Ascent velocity; Surface elevation; Eruption conduit; CONVECTION; KIMBERLITE; IMAGES; скорость течения; кинематическая вязкость; расплав; канал излияния; высота поднятия; сверхлитостатическое давление; скорость подъема; кровля плюма; Канал плюма; тепловая мощность; Термохимический плюм; flow velocity; kinematic viscosity; melt; |
Издано: | 2020 |
Физ. характеристика: | с.397-416 |
Цитирование: | 1. Atikinson E., Pryde R., 2006. Seismic Investigation of Selected Kimberlite Pipes in the Buffalo Head Hills Kimberlite Field, North-Central Alberta. Alberta Energy and Utilities Board, EUB/AGS Special Report 079, 1 p. 2. Burov E., Guillou-Frottier L., 2005. The Plume Head-Continental Lithosphere Interaction Using a Tectonically Realistic Formulation for the Lithosphere. Geophysical Journal International 161, 469-490. https://doi.org/10.1111/j.1365-246X.2005.02588.x. 3. Camp V.E., Ross M.E., 2004. Mantle Dynamics and Genesis of Mafic Magmatism in the Intermontane Pacific Northwest. Journal of Geophysical Research 109 (B8), B08204. https://doi.org/10.1029/2003JB002838. 4. Chalapathi Rao N.V., Lehmann B., 2011. Kimberlites, Flood Basalts and Mantle Plumes: New Insights from the Deccan Large Igneous Province. Earth-Science Reviews 107 (3-4), 315-324. https://doi.org/10.1016/j.earscirev.2011.04.003. 5. Condie K.C., 2016. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 418 p. https://doi.org/10.1016/C2015-0-00179-4. 6. Davaille A., Limare A., Touitou F., Kumagai I., Vatteville J., 2011. Anatomy of a Laminar Starting Thermal Plume at High Prandtl Number. Experiments in Fluids 50 (2), 285- 300. https://doi.org/10.1007/s00348-010-0924-y. 7. Davaille A., Vatteville J., 2005. On the Transient Nature of Mantle Plumes. Geophysical Research Letters 32 (14), L14309. https://doi.org/10.1029/2005GL023029. 8. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2001. Deep-Level Geodynamics. Siberian Branch of RAS Publishing House, Geo Branch, Novosibirsk, 408 p. 9. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N., 2008. Modelling of Thermochemical Plumes and Implications for the Origin of the Siberian Traps. Lithos 100 (1-4), 66-92. https://doi.org/10.1016/j.lithos.2007.06.025. 10. Farnetani C.G., Richards M.A., 1994. Numerical Investigations of the Mantle Plume Initiation Model for Flood Basalt Events. Journal of Geophysical Research 99 (B7), 13813-13833. https://doi.org/10.1029/94JB00649. 11. Field M., Stiefenhofer J., Robey J., Kurszlaukis S., 2008. Kimberlite-Hosted Diamond Deposits of Southern Africa: A Review. Ore Geology Reviews 34 (1-2), 33-75. https://doi.org/10.1016/j.oregeorev.2007.11.002. 12. Gladkov I.N., Distanov V.E., Kirdyashkin A.A., Kirdyashkin A.G., 2012. Stability of a Melt/Solid Interface with Reference to a Plume Channel. Fluid Dynamics 47 (4), 433-447. https://doi.org/10.1134/S0015462812040023. 13. Griffiths R.W., Campbell I.H., 1990. Stirring and Structure in Mantle Starting Plumes. Earth and Planetary Science Letters 99 (1-2), 66-78. https://doi.org/10.1016/0012-821X(90)90071-5. 14. Guillou L., Jaupart C., 1995. On the Effects of Continents on Mantle Convection. Journal of Geophysical Research 100 (B12), 24217-24238. https://doi.org/10.1029/95JB02518. 15. Guillou-Frottier L., Burov E., Nehlig P., Wyns R., 2007. Deciphering Plume-Lithosphere Interactions beneath Europe from Topographic Signatures // Global and Planetary Change 58 (1-4), 119-140. https://doi.org/10.1016/j.gloplacha.2006.10.003. 16. Haggerty S.E., 2011. Kimberlites, Supercontinents and Deep Earth Dynamics: Mid-Proterozoic India in Rodinia. In: J. Ray, G. Sen, B. Ghosh (Eds), Topics in Igneous Petrology. Springer, Dordrecht, p. 421-435. https://doi.org/10.1007/978-90-481-9600-5_16. 17. Herzberg C., Zhang J., 1996. Melting Experiments on Anhydrous Peridotite Klb-1: Compositions of Magmas in the Upper Mantle and Transition Zone. Journal of Geophysical Research 101 (B4), 8271 - 8275. https://doi.org/10.1029/96JB00170. 18. Hofmeister A.M., 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science 283 (5408), 1699-1706. https://doi.org/10.1126/science.283.5408.1699. 19. Jelsma H., Barnett W., Richards S., Lister G., 2009. Tectonic Setting of Kimberlites. Lithos 112S, 155-165. https://doi.org/10.1016/j.lithos.2009.06.030. 20. Kennedy C.S., Kennedy G.C., 1976. The Equilibrium Boundary between Graphite and Diamond // Journal of Geophysical Research 81 (14), 2467-2470. https://doi.org/10.1029/JB081i014p02467. 21. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2004. Thermochemical Plumes. Russian Geology and Geophysics 45 (9), 1005-1024. 22. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2009. Heat Transfer between a Thermochemical Plume Channel and the Surrounding Mantle in the Presence of Horizontal Mantle Flow. Izvestiya, Physics of the Solid Earth 45 (8), 684-700. https://doi.org/10.1134/S1069351309080084. 23. Kirdyashkin A.A., Kirdyashkin A.G., 2013. Interaction of a Thermochemical Plume with Free Convection Mantle Flows and Its Influence on Mantle Melting and Recrystallization. Russian Geology and Geophysics 54, 544-554. https://doi.org/10.1016/j.rgg.2013.04.006. 24. Kirdyashkin A.A., Kirdyashkin A.G., 2016. On Thermochemical Mantle Plumes with an Intermediate Thermal Power That Erupt on the Earth's Surface. Geotectonics 50 (2), 209-222. https://doi.org/10.1134/S0016852116020059. 25. Kirdyashkin A.A., Kirdyashkin A.G., Surkov N.V., 2006. Thermal Gravitational Convection in the Asthenosphere beneath a Mid-Ocean Ridge and Stability of Main Mantle-Derived Parageneses. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (1), 76-94. 26. Kirdyashkin A.G., Kirdyashkin A.A., 2015. Mantle Thermochemical Plumes and Their Influence on the Formation of Highlands. Geotectonics 49 (4), 332-341. https://doi.org/10.1134/S0016852115040032. 27. Kirdyashkin A.G., Kirdyashkin A.A., 2016. Parameters of Plumes of North Asia. Russian Geology and Geophysics 57 (11), 1535-1550. https://doi.org/10.1016/j.rgg.2016.10.002. 28. Kirdyashkin A.G., Kirdyashkin A.A., Distanov V.E., Gladkov I.N., 2019. Experimental and Theoretical Modeling of Diamondiferous Plumes. Geodynamics & Tectonophysics 10 (2), 247-263 29. Lenardic A., Guillou-Frottier L., Mareschal J.-C., Jaupart C., Moresi L.-N., Kaula W.M., 2000. What the Mantle Sees: The Effects of Continents on Mantle Heat Flow. In: M.A. Richards, R.G. Gordon, R.D. van der Hilst (Eds), AGU Geophysical Monograph. Vol. 121. The History and Dynamics of Global Plate Motions. American Geophysical Union, p. 95-112. https://doi.org/10.1029/GM121p0095. 30. Li X., Kind R., Priestley K., Sobolev S.V., Tilmann F., Yuan X., Weber M., 2000. Mapping the Hawaiian Plume Conduit with Converted Seismic Waves. Nature 405, 938-941. https://doi.org/10.1038/35016054. 31. Lin S.-C., van Keken P.E., 2006. Dynamics of Thermochemical Plumes: 1. Plume Formation and Entrainment of a Dense Layer. Geochemistry, Geophysics, Geosystems 7 (2), Q02006. https://doi.org/10.1029/2005GC001071. 32. Maruyama S., Yuen D.A., Windley B.F., 2007. Dynamics of Plumes and Superplumes through Time. In: D.A. Yuen, S. Maruyama, S.-I. Karato, B.F. Windley (Eds), Superplumes: Beyond Plate Tectonics. Springer, Dordrecht, p. 441-502. https://doi.org/10.1007/978-1-4020-5750-2_15. 33. Mitchell R.H., 1986. Kimberlites: Mineralogy, Geochemistry, and Petrology. Plenum Press, New York, 442 p. https://doi.org/10.1007/978-1-4899-0568-0. 34. Montelli R., Nolet G., Dahlen F.A., Masters G., 2006. A Catalogue of Deep Mantle Plumes: New Results from Finite-Frequency Tomography. Geochemistry, Geophysics, Geosystems 7 (11), Q11007. https://doi.org/10.1029/2006GC001248. 35. Nakagawa T., Tackley P.J., 2004. Thermo-Chemical Structure in the Mantle Arising from a Three-Component Convective System and Implications for Geochemistry. Physics of the Earth and Planetary Interiors 146 (1-2), 125-138. https://doi.org/10.1016/j.pepi.2003.05.006. 36. Nolet G., Karato S.-I., Montelli R., 2006. Plume Fluxes from Seismic Tomography. Earth and Planetary Science Letters 248, 685-699. https://doi.org/10.1016/j.epsl.2006.06.011. 37. Olson P., Singer H., 1985. Creeping Plumes. Journal of Fluid Mechanics 158, 511-531. https://doi.org/10.1017/S0022112085002749. 38. Perchuk L.L., Kushiro I., 1985. Experimental Study of the System Alkali Basalt-Water up to Pressure 20 Kbar in Respect of Estimation of H2O Content in the Original Magmas beneath the Island Arcs. Geologicky Zbornik-Geologica Carpathica 36 (3), 359-368. 39. Puchkov V.N., 2016. Relationship between Plume and Plate Tectonics. Geotectonics 50, 425-438. https://doi.org/10.1134/S0016852116040075. 40. Rudnick R.L., Gao S., 2003. Composition of the Continental Crust. In: H.D. Holland, K.K. Turekian (Eds), Treatise on Geochemistry. Vol. 3. The Crust. Elsevier, Amsterdam, p. 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4. 41. Schlichting H., 1975. Boundary-layer theory. McGraw-Hill, New York, 817 p. 42. Şengör A.M.C., 2001. Elevation as Indicator of Mantle-Plume Activity. In: R.E. Ernst, K.L. Buchan (Eds), GSA Special Papers. Vol. 352. Mantle Plumes: Their Identification through Time. Geological Society of America, p. 183-225. https://doi.org/10.1130/0-8137-2352-3.183. 43. Sparks R.S.J., 2013. Kimberlite Volcanism. Annual Review of Earth and Planetary Sciences 41, 497-528. https://doi.org/10.1146/annurev-earth-042711-105252. 44. Sparks R.S.J., Baker L., Brown R.J., Field M., Schumacher J., Stripp G., Walters A., 2006. Dynamical Constraints on Kimberlite Volcanism. Journal of Volcanology and Geothermal Research 155 (1-2), 18-48. https://doi.org/10.1016/j.jvolgeores.2006.02.010. 45. Spera F.J., 1984. Carbon Dioxide in Petrogenesis III: Role of Volatiles in the Ascent of Alkaline Magma with Special Reference to Xenolith-Bearing Mafic Lavas. Contributions to Mineralogy and Petrology 88 (3), 217-232. https://doi.org/10.1007/BF00380167. 46. Starostin V.I., Dergachev A.L., Seminskiy Zh.V., 2002. Structures of Ore Fields and Deposits. Moscow State University Publishing House, 352 p. 47. Surkov N.V., 2003. Lerzolite Paleogeotherm. In: A.D. Savko, N.N. Zinchuk (Eds), Problems of Forecasting, Exploration and Study of Mineral Deposits into the 21st Century. Voronezh State University Publishing House, Voronezh, p. 430-433 48. Tan E., Gurnis M., 2007. Compressible Thermochemical Convection and Application to Lower Mantle Structures. Journal of Geophysical Research 112 (B6), B06304. https://doi.org/10.1029/2006JB004505. 49. Tappe S., Smart K., Torsvik T., Massuyeau M., de Wit M., 2018. Geodynamics of Kimberlites on a Cooling Earth: Clues to Plate Tectonic Evolution and Deep Volatile Cycles. Earth and Planetary Science Letters 484, 1-14. https://doi.org/10.1016/j.epsl.2017.12.013. 50. Torsvik T.H., Burke K., Steinberger B., Webb S.J., Ashwal L.D., 2010. Diamonds Sampled by Plumes from the Core-Mantle Boundary. Nature 466, 352-357. https://doi.org/10.1038/nature09216. 51. Trubitsyn V.P., 2010. Thermochemical Convection in the Mantle with Oceanic Crust Recirculation. Izvestiya, Physics of Solid Earth 46 (11), 922-930. https://doi.org/10.1134/S1069351310110029. 52. Walzer U., Hendel R., Baumgardner J., 2004. The Effects of a Variation of the Radial Viscosity Profile on Mantle Evolution. Tectonophysics. 384 (1-4), 55-90. https://doi.org/10.1016/j.tecto.2004.02.012. 53. White S.H., de Boorder H., Smith C.B., 1995. Structural Controls of Kimberlite and Lamproite Emplacement. Journal of Geochemical Exploration 53 (1-3), 245-264. https://doi.org/10.1016/0375-6742(94)00033-8. 54. Zhao D., 2004. Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics. Physics of the Earth and Planetary Interiors 146, 3-34. https://doi.org/10.1016/j.pepi.2003.07.032. 55. Zhao D., 2007. Seismic Images under 60 Hotspots: Search for Mantle Plumes. Gondwana Research 12, 335-355. https://doi.org/10.1016/j.gr.2007.03.001. |