Инд. авторы: Moroz T.N., Ponomarchuk V.A., Pyryaev A.N, Palchik N.A., Goryainov S.V., Edwards H.G.
Заглавие: Raman spectra of a graphite–nontronite association in marbles from oltrek island (lake baikal, russia)
Библ. ссылка: Moroz T.N., Ponomarchuk V.A., Pyryaev A.N, Palchik N.A., Goryainov S.V., Edwards H.G. Raman spectra of a graphite–nontronite association in marbles from oltrek island (lake baikal, russia) // Journal of Raman Spectroscopy. - 2019. - ISSN 0377-0486. - EISSN 1097-4555.
Внешние системы: DOI: 10.1002/jrs.5763; РИНЦ: 41813088; РИНЦ: 45488315;
Реферат: eng: The graphite in marbles from Oltrek, an uninhabited island on Lake Baikal, has been investigated by micro-Raman spectroscopy using visible and near-ultraviolet wavelength excitation. All graphite samples exhibit a sharp first-order Raman band at about 1,580 cm−1 with a width from 10 to 19 cm−1, and sometimes a D1 band with very low intensity, which is occasionally absent. Using Raman spectra data it was estimated that the temperature of graphite formation in the Oltrek marbles is about 530–650°C and possibly even higher. This evaluation is in good agreement with the temperatures (about 700°C) determined by a graphite isotope geothermometer of the graphite–calcite pair. Scanning electron microscopy images have recorded a сonical graphite morphology on the surface of plate crystals of graphite. Raman spectra of samples with cones about 200–400 nm sizes showed that the graphite was associated with nontronite in the specimens studied. Natural nontronite, a clay mineral of the smectite group, has not been well characterized using Raman spectroscopy. Here, the Raman spectra of the Oltrek nontronite were compared with the spectrum of nontronite from the weathered crust of the Salair Ridge, Russia. The formation of hexagonal–pyramidal structures on the surface of graphite with the participation of clay and bio-organic matter in marble is discussed.
Ключевые слова: raman spectroscopy; nontronite; graphite; Cone morphology;
Издано: 2019
Цитирование: 1. T. Moroz, Vibrational spectroscopy of natural garnet, in Garnet: Metamorphic History, Composition and Crystallization, (Eds: H. Schweitzer, J. Metzger), Nova Science Publishers, Inc., New York 2012, 241. 2. T. N. Moroz, V. A. Ponomarchuk, S. V. Goryanov, GeoRAMAN2018-Abstract 2018; 191. 3. T. N. Moroz, V. A. Ponomarchuk, S. V. Goryainov, N. A. Palchik, H. G. M. Edwards, S. M. Zhmodik, J. Raman Spectrosc. 2015, 46, 959. 4. N. A. Palchik, T. N. Grigorieva, T. N. Moroz, J. Struct. Chem. 2009, 50, S110. 5. N. A. Palchik, T. N. Moroz, T. N. Grigorieva, N. K. Nikandrova, L. V. Miroshnichenko, Crystallogr. Reports 2017, 62, 91. 6. V. A. Drits, A. G. Kossovskaya, Clay Minerals: Smectites, Mixed-layer Formations, Nauka, Moscow 1990 (in Russian). 7. N. Guven, in Hydrous Phyllosilicates. Reviews in Mineralogy, (Ed: S. W. Bailey) Vol. 19, Mineral Soc. Am., Washington, DC 1991, 497. 8. R. T. Downs, M. Hall-Wallace, Am. Mineral. 2003, 88, 247. 9. R. L. Frost, J. T. Kloprogge, Z. Ding, Spectrochim. Acta A 2002, 58, 1657. 10. T. N. Moroz, N. A. Palchik, T. N. Grigorieva, Y. P. Kolmogorov, A. N. Derkachev, J. Surf. Investigation: X-ray, Synchrotron Neutron Techniques 2011, 5, 1073. 11. V. M. Dekov, G. D. Kamenov, J. Stummeyer, M. Thiry, C. Savelli, W. C. Shanks, D. Fortin, E. Kuzmann, A. Vértes, Chem. Geol. 2007, 245, 103. 12. B. Kohler, A. Singer, P. Stoffers, Clays Clay Miner. 1994, 42, 689. 13. R. L. Frost, J. T. Kloprogge, Appl. Spectrosc. 2000, 54, 402. 14. S. R. Gainey, E. M. Hausrath, J. A. Hurovitz, R. E. Milliken, Geochim. Cosmochim. Acta 2014, 126, 192. 15. R. L. Frost, J. T. Kloprogge, Spectrochim. Acta A 2000, A56, 2177. 16. L. R. Friedlander, T. D. Glotch, D. L. Bish, M. D. Dyar, T. G. Sharp, E. Csklute, J. R. Michalski, J. Geophys. Res.: Planets 2015, 120, 120. https://doi.org/10.1002/2014JE004638 17. L. B. Breitenfeld, M. D. Dyar, C. J. Carey, P. Bartholomew, T. J. Tague, P. Wang, S. Mertzmann, S. A. Byrne, M. С. Crowley, С. L. Watts, LPSci Conf. 2016; 2186. 18. M. J. Vieira, A. P. Pacheco, I. A. Pinho, L. F. Melo, Environ. Technol. 2001, 22, 123. 19. A. Alimova, A. Katz, N. Steiner, E. Rudolph, H. Wei, J. C. Steiner, P. Gottlieb, Clays Clay Miner. 2009, 57, 205. 20. A. Y. Rozanov, Soros Obrazovatel'nyi Zh 1999, 10, 63. 21. A. I. Gorshkov, Y. A. Bogdanov, E. G. Gurvich, O. Bogdanova, G. Dubinina, G. Ivanov, A. Isaeva, K. Muraviov, Okeanologiya 1997, 37, 44. 22. Y.-W. Wu, J.-C. Zhang, L.-J. Wang, Y.-X. Wang, Ecol. Eng. 2017, 101, 162. 23. B. Lian, Y. Chen, L. Zhu, R. Yang, Earth Sci. Frontiers 2008, 15, 90. 24. S. Bernard, K. Benzerara, O. Beyssac, G. E. Brown Jr., Geochim. Cosmochim. Acta 2010, 74, 5054. 25. S. Bernard, D. Papineau, Elements 2014, 10, 435. 26. J. D. Schiffbauer, L. M. Yin, R. J. Bodnar, A. J. Kaufman, F. W. Meng, J. Hu, B. Shen, X. L. Yuan, H. M. Bao, S. H. Xiao, Astrobiology 2007, 7, 684. 27. H. G. M. Edwards, N. C. Russell, D. D. Wynn-Williams Jr., Raman Spectrosc. 1997, 28, 685. 28. H. G. M. Edwards, I. B. Hutchinson, R. Ingley, J. Jehlička, Phil. Trans. R. Soc. A 2014, 372, 20140193. https://doi.org/10.1098/rsta.2014.0193 29. J. Jehlička, H. G. M. Edwards, A. Culka, Phil. Trans. R. Soc. A 2010, 368, 1922. 30. B. Wopenka, J. D. Pasteris, Am. Mineral. 1993, 78, 53. 31. J. D. Pasteris, B. Wopenka, Can. Mineral. 1991, 29, 1. 32. O. Beyssac, B. Goffe, C. Chopin, J. N. Rouzaud, J. Metam. Geol. 2002, 20, 859. 33. O. Beyssac, M. Lazzeri, in Applications of Raman Spectroscopy to Earth Sciences and Cultural Heritage, (Eds: J. M. C. Dubessy, M. C. Caumon, M. C. Rull) EMU Notes in Mineralogy Vol 12, Mineralogy Society of Great Britain and Ireland, Twickenham, United Kingdom 2012, 415. 34. O. Beyssac, D. R. M. Pattison, F. Bourdelle, J. Metam. Geol. 2018, 36, 72. 35. J. M. Rahl, K. M. Anderson, M. T. Brandon, C. Fassoulas, Earth Planet. Sci. Lett. 2005, 240, 339. 36. G. Rantitsch, R. F. Sachsenhofer, C. Hasenhuttl, B. Russegger, T. Rainer, Tectonophysics 2005, 411, 57. 37. M. Aoya, Y. Kouketsu, S. Endo, H. Shimizu, T. Mizukami, D. Nakamura, S. Wallis, J. Metam. Geol. 2010, 28, 895. 38. Y. Kouketsu, T. Mizizukami, U. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis, Island Arc 2014, 23, 33. 39. J. Jehlička, A. Stastna, R. Prikryl, Spectrochim. Acta A 2009, A73, 404. 40. A. C. Ferrari, J. Robertson, Phys. Rev. 2000, B 61, 95. 41. A. C. Ferrari, J. Robertson, Phil. Trans. R. Soc. Lond. A 2004, 362, 2477. 42. H. M. Heise, R. Kuckuk, A. Svivastava, B. P. Asthana, J. Raman Spectrosc 2011, 42, 294. 43. N. K. Lünsdorf, I. Dunkl, B. C. Schmidt, G. Rantitsch, H. von Eynatten, Geostand. Geoanal. Res. 2014, 38, 73. 44. N. K. Lünsdorf, I. Dunkl, B. C. Schmidt, G. Rantitsch, H. von Eynatten, Geostand. Geoanal. Res. 2017, 41, 593. 45. B. Lafuente, R. T. Downs, H. Yang, N. Stone, in Highlights in Mineralogical Crystallography, (Eds: T. Armbruster, R. M. Danisi), W. De Gruyter, Berlin, Germany 2015, 1. 46. M. Satish-Kumar, J. A. Jaszczak, T. Hamamatsu, H. Wada, Am. Mineral. 2011, 96, 470. 47. A. N. Pyryaev, A. T. Titov, T. N. Moroz, V. A. Ponomarchuk, A. G. Vladimirov, E. I. Mikheev, Proceed. Russian Conference. Fluid Regime of Endogenous Processes of the Continental Lithosphere, Inst. Earth Crust, Irkutsk 2015, 136. 48. J. A. Jaszczak, G. W. Robinson, S. Dimovski, Y. Gogotsi, Carbon 2003, 41, 2085. 49. J. A. Jaszczak, S. Dimovski, S. A. Hackney, G. W. Robinson, P. Bosio, Y. Gogotsi, Can. Mineral. 2007, 45, 379. 50. A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, T. W. Ebbsen, Nature 1997, 388, 451. 51. G. Zhang, X. Jiang, E. Wang, Science 2003, 300, 472. 52. P. H. Tan, S. Dimovski, Y. Gogotsi, Phil. Trans. R. Soc. Lond. A 2004, 362, 2289. 53. M. R. Ammar, J.-N. Rouzaud, J. Raman spectrosc. 2012, 43, 207. 54. H. Wada, K. Suzuki, Geocim. Cosmochim. Acta 1983, 47, 697. 55. T. Chacko, T. K. Mayeda, R. N. Clayton, J. R. Goldsmith, Geochim. Cosmochim. Acta 1991, 55, 2867. 56. S. R. Dunn, J. Metam. Geol. 2005, 23, 813. 57. P. Deines, in Carbonatites, Genesis and Evolution, (Ed: K. Bell), Unwin Hyman, London 1989, 301. 58. M. Satish-Kumar, H. Wada, M. Santosh, Gondw. Res. 2001, 4, 377. 59. S. Kavecky, J. Valuchova, M. Caplovicova, S. Heissler, S. Sajgalik, M. Janek, Appl. Clay Sci 2015, 114, 170. 60. Z. Xu, H. Wang, J.-Y. Hwang, Carbon 2007, 45, 873. 61. D. Gournis, M. A. Karakassides, T. Bakas, N. Boukos, D. Petridis, Carbon 2002, 40, 2641. 62. T. N. Moroz, N. A. Palchik, GeoRAMAN2016-Abstract., 2016; 57. 63. N. A. Palchik, T. N. Grigorieva, T. N. Moroz, Crystal. Report 2013, 58, 302. 64. V. T. Marteinsson, J. K. Kristjánsson, H. Kristmannsdóttir, M. Dahlkvist, K. Sæmundsson, M. D. Hannington, S. K. Petursdottir, A. R. Geptner, P. Stoffers, Appl. Environ. Microbiol. 2001, 67, 827. 65. L. B. Breitenfeld, M. D. Dyar, C. J. Carey, P. Bartholomew, T. J. Tague, P. Wang, S. Mertzmann, S. A. Byrne, M. С. Crowley, С. Leight Watts, LPSci Conf. 2016; 2186 pdf 66. J. L. Keeling, M. D. Raven, W. P. Gates, Clays Clay Miner. 2000, 48, 537. 67. H. Fu, M. Du, Q. Zheng, ACS Appl. Mater. Interfaces 2012, 4, 1981. 68. A. Bakandritos, A. Simopoulos, D. Petridis, Nanotechnology 2006, 17, 1112. 69. W. A. Tarr, American J. Sci. 1922, 4, 199. 70. J. N. Hooker, J. Cartwright, Geol. Mag. 2018, 155, 568.