Реферат: | eng: The polymorphism of tolbutamide and chlorpropamide under melting/crystallization was investigated with using DSC and in situ X-ray powder diffraction. The asymmetry in thermal transformations was revealed for both substances. Under heating, all tolbutamide/chlorpropamide polymorphs transform into high-temperature I-H/epsilon polymorph, which melts at 128 degrees C. The crystal structures of the high-temperature polymorphs, I-H and epsilon, are very similar to each other in the unit cell parameters and in the arrangement of z-shaped infinite hydrogen-bonded ribbons. Under cooling, other polymorph crystallizes from the melt, V for tolbutamide and beta for chlorpropamide, thus making easy the obtaining of these metastable polymorphs. The polymorphs of tolbutamide and chlorpropamide crystallized from their melts turned out to be also very similar to each other in their structures (space group, unit cell parameters, arrangement of pi-shaped infinite hydrogen-bonded ribbons). Solid-solid transformation V II in tolbutamide was detected both in samples stored under room conditions and those melted in capillaries, thus providing new easy way for II tolbutamide crystallization. In generalizing our results, one can expect that if evident similarity is found among the polymorphs of similar molecules in their crystal structure, the similarity in their thermal properties can be also found, and vice versa.
|
Цитирование: | 1. Brittain HG, editor. Polymorphism in pharmaceutical solids. New York: Marcel Dekker Inc.; 1999.
2. Bernstein J. Polymorphism in molecular crystals. Oxford: Clarendon Press; 2002.
3. Brog JP, Chanez CL, Crochet A, Fromm KM. Polymorphism, what it is and how to identify it: a systematic review. RSC Adv. 2013;3:16905–31. DOI: 10.1039/c3ra41559g
4. Price SL. Why don’t we find more polymorphs? Acta Cryst B. 2013;69:313–28. 10.1107/S2052519213018861. DOI: 10.1107/S2052519213018861
5. Cruz-Cabeza AJ, Bernstein J. Conformational polymorphism. Chem Rev. 2014;114:2170–91. 10.1021/cr400249d. DOI: 10.1021/cr400249d
6. Bombicz P. The way from isostructurality to polymorphism. Where are the borders? The role of supramolecular interactions and crystal symmetries. Crystallogr Rev. 2017;23:118–51. 10.1080/0889311X.2016.1251909. DOI: 10.1080/0889311X.2016.1251909
7. Higashi K, Ueda K, Moribe K. Recent progress of structural study of polymorphic pharmaceutical drugs. Adv Drug Deliv Rev. 2017;117:71–85. 10.1016/j.addr.2016.12.001. DOI: 10.1016/j.addr.2016.12.001
8. Karpinski PH. Polymorphism of active pharmaceutical ingredients. Chem Eng Technol. 2006;29:233–7. 10.1002/ceat.200500397. DOI: 10.1002/ceat.200500397
9. Drebushchak TN, Drebushchak VA, Pankrushina NA, Boldyreva EV. Single-crystal to single-crystal conformational polymorphic transformation in tolbutamide at 313 K. Relation to other polymorphic transformations in tolbutamide and chlorpropamide. CrystEngComm. 2016;18:5736–43. 10.1039/C6CE00764C. DOI: 10.1039/C6CE00764C
10. Thirunahari S, Aitipamula S, Chow PS, Tan RBH. Conformational polymorphism of tolbutamide: a structural, spectroscopic, and thermodynamic characterization of Burger’s forms I–IV. J Pharm Sci. 2010;99:2975–90. 10.1002/jps.22061. DOI: 10.1002/jps.22061
11. Drebushchak VA, Drebushchak TN, Chukanov NV, Boldyreva EV. Transitions among five polymorphs of chlorpropamide near the melting point. J Therm Anal Calorim. 2008;93:343–51. 10.1007/s10973-007-8822-0. DOI: 10.1007/s10973-007-8822-0
12. Svärd M, Valavi M, Khamar D, Kuhs M, Rasmuson ÅC. Thermodynamic stability analysis of tolbutamide polymorphs and solubility in organic solvents. J Pharm Sci. 2016;105:1901–6. 10.1016/j.xphs.2016.03.021. DOI: 10.1016/j.xphs.2016.03.021
13. Nath NK, Nangia A. Novel form V of tolbutamide and a high Z′ crystal structure of form III. CrystEngComm. 2011;13:47–51. 10.1039/C0CE00073F. DOI: 10.1039/C0CE00073F
14. Drebushchak TN, Drebushchak VA, Boldyreva EV. Solid-state transformations in the β-form of chlorpropamide on cooling to 100 K. Acta Cryst B. 2011;67:163–76. 10.1107/S0108768111004290. DOI: 10.1107/S0108768111004290
15. de Souza CM, dos Santos JA, do Nascimento AL, Júnior JV, Júnior FJ, de Lima Neto SA, de Souza FS, Macêdo RO. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim. 2018;131:681–9. 10.1007/s10973-017-6091-0. DOI: 10.1007/s10973-017-6091-0
16. Detrich Á, Dömötör KJ, Katona MT, Markovits I, Láng JV. Polymorphic forms of bisoprolol fumarate. J Therm Anal Calorim. 2019;135:3043–55. 10.1007/s10973-018-7553-8. DOI: 10.1007/s10973-018-7553-8
17. Neglur R, Hosten E, Aucamp M, Liebenberg W, Grooff D. Water and the relationship to the crystal structure stability of azithromycin. Thermal investigations of solvatomorphism, amorphism and polymorphism. J Therm Anal Calorim. 2018;132:373–84. 10.1007/s10973-017-6928-6. DOI: 10.1007/s10973-017-6928-6
18. Osiecka N, Juszyńska-Gałązka E, Galewski Z, Jaworska-Gołąb T, Deptuch A, Massalska-Arodź M. Insight into polymorphism of the ethosuximide (ETX). J Therm Anal Calorim. 2018;133:961–7. 10.1007/s10973-018-7142-x. DOI: 10.1007/s10973-018-7142-x
19. Roque-Flores RL, do Rosário Matos J. Simultaneous measurements of X-ray diffraction–differential scanning calorimetry. The investigation of the phase transition of ganciclovir and characterization of its polymorphic forms. J Therm Anal Calorim. 2019;137:1347–58. 10.1007/s10973-019-08031-z. DOI: 10.1007/s10973-019-08031-z
20. Zhao Y, Zheng ZB, Li S. Thermodynamic relationship between flupirtine maleate polymorphs. J Therm Anal Calorim. 2018;134:2057–63. 10.1007/s10973-018-7637-5. DOI: 10.1007/s10973-018-7637-5
21. Drebushchak VA. Calibration coefficient of a heat-flow DSC; Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8. 10.1007/s10973-004-0586-1. DOI: 10.1007/s10973-004-0586-1
22. WinXPOW. Stoe & Cie GmbH. Darmstadt: Germany; 2011.
23. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Cryst. 2008;41:466–70. 10.1107/S0021889807067908. DOI: 10.1107/S0021889807067908
24. Bouvart N, Palix RM, Arkhipov SG, Tumanov IA, Michalchuk AAL, Boldyreva EV. Polymorphism of chlorpropamide on liquid-assisted mechanical treatment: choice of liquid and type of mechanical treatment matter. CrystEngComm. 2018;20:1797–803. 10.1039/C7CE02221B. DOI: 10.1039/C7CE02221B
25. Drebushchak TN, Chukanov NV, Boldyreva EV. Two polymorphs of chlorpropamide: the δ-form and the high-temperature ε-form. Acta Cryst C. 2008;64:o623–5. 10.1107/S0108270108034550. DOI: 10.1107/S0108270108034550
26. Drebushchak TN, Chesalov YA, Boldyreva EV. A conformational polymorphic transition in the high-temperature epsilon-form of chlorpropamide on cooling: a new ε′-form. Acta Cryst B. 2009;65:770–81. 10.1107/S010876810903290X. DOI: 10.1107/S010876810903290X
27. Drebushchak TN, Ogienko AA, Boldyreva EV. ‘Hedvall effect’ in cryogrinding of molecular crystals. A case study of a polymorphic transition in chlorpropamide. CrystEngComm. 2011;13:4405–10. 10.1039/C1CE05189J. DOI: 10.1039/C1CE05189J
28. Drebushchak TN, Chukanov NV, Boldyreva EV. A new polymorph of chlorpropamide: 4-chloro-N-(propylaminocarbonyl) benzenesulfonamide. Acta Cryst E. 2006;62:o4393–5. 10.1107/S1600536806035628. DOI: 10.1107/S1600536806035628
29. Ostwald W. Studien über die Bildung und Umwandlung fester Körper. Z Phys Chem. 1897;22:289–330. 10.1515/zpch-1897-2233. DOI: 10.1515/zpch-1897-2233
30. Drebushchak VA, McGregor L, Rychkov DA. Cooling rate “window” in the crystallization of metacetamol form II. J Therm Anal Calorim. 2017;127:1807–14. 10.1007/s10973-016-5954-0. DOI: 10.1007/s10973-016-5954-0
|