Цитирование: | 1. Artioli G, Pavese A, Stahl K, McMullan RK. Single-crystal neutron-diffraction study of pyrope in the temperature range 30–1173 K. Can Miner. 1997;35:1009–19.
2. Bosenick A, Geiger CA. Powder X-ray diffraction study of synthetic pyrope-grossular garnets between 20 and 295 K. J Geophys Res. 1997;102(B10):22649–57.
3. Bosenick A, Geiger CA, Cemic L. Heat capacity measurements of synthetic pyrope-grossular garnets between 320 and 1000 K by differential scanning calorimetry. Geochim Cosmochim Acta. 1996;60(17):3215–27.
4. Chen G, Cooke JAJ, Gwanmesia GD, Liebermann RC. Elastic wave velocities of Mg3Al2Si3O12-pyrope garnet to 10 GPa. Am Mineral. 1999;84:384–8.
5. Chopelas A. Modeling the thermodynamic parameters of six end member garnets at ambient and high pressures from vibrational data. Phys Chem Miner. 2006;33:363–76.
6. Conrad PG, Zha CS, Mao HK, Hemley RJ. The high-pressure, single crystal elasticity of pyrope, grossular and andradite. Am Mineral. 1999;84:374–83.
7. Doroshev AM, Galkin VM, Kuznetsov GN. Thermal expansion of stishovite in the temperature range 98–420 K. Geokhimiya. 1987;10:1463–7.
8. Doroshev AM, Galkin VM, Turkin AI, Kalinin AA. Thermal expansion of garnets of pyrope-grossular and pyrope-knorringite series. Geokhimiya. 1990;1:152–5.
9. Doroshev AM, Kuznetsov GN, Galkin VM. The calculation of Gruneisen coefficient and characteristic Debye temperature from the data on thermal expansion and capacity. Zh Fiz Khim. 1988;LXII(3):823–5.
10. Du W, Clark S, Walker D. Thermo-compression of pyrope-grossular garnet solid solutions: non-linear compositional dependence. Am Miner. 2015;100(1):215–22. 10.2138/am-2015-4752. DOI: 10.2138/am-2015-4752
11. Galkin VM, Doroshev AM, Babich YV. Thermal expansion of coesite. Geokhimiya. 1987;11:1645–6.
12. Galkin V, Gartvich Y. Thermal expansion and evaluation of almandine heat capacity. J Therm Anal Calorim. 2015;122(3):1239–44.
13. Galkin V, Kuznetsov G, Turkin A. Thermal expansion of ZnSiO3 high-pressure phases. Phys Chem Miner. 2007;34(6):377–81.
14. Gartvich Y, Galkin V. Ni olivine: thermal behavior of liebenbergite. J Therm Anal Calorim. 2019;136:2333–9.
15. Geiger CA. An investigation of the microscopic structural and the macroscopic physicochemical properties of aluminosilicate garnets and their relationships. Kiel: Habilitationschrift, Kiel University; 1996.
16. Gwanmesia DG, Jackson I, Liebermann RC. Ultrasonic wave velocities of Py20Mj80 garnet to 9 GPa at room temperature. Phys Chem Miner. 2007;34(2):85–93.
17. Haselton HT, Westrum EF. Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60-grossular40. Geo Geochim Cosmochim Acta. 1980;44:701–9.
18. Isaak DG, Graham EK. The elastic properties of an almandine–spessartine garnet and elasticity in the garnet solid solution series. J Geophys Res Atmosp. 1976;81(14):2483–9. 10.1029/JB081i014p02483. DOI: 10.1029/JB081i014p02483
19. Kawai K, Tsuchiya T. Elasticity and phase stability of pyrope garnet from ab initio computation. Phys Earth Planet Int. 2015;240:125–31.
20. Kiseleva IA. Thermodynamical properties and stability of pyrope. Geochem Int. 1976;13:139–46.
21. Kolesnik YN, Yachmenev VY, Vilkovskiy VA. Vishnevskiy AA Heat capacity of 2–300 K temperature range and entropy of chromium-bearing garnets. Geokhimiya. 1994;1:89–100.
22. Leger JM, Redon AM. Chateau C Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa. Phys Chem Miner. 1990;17:161–7.
23. Leitner BJ, Weidner DJ, Liebermann RC. Elasticity of single crystal pyrope and implications for garnet solid solution series. Phys Earth Planet Inter. 1980;22(2):111–21.
24. Levien L, Prewitt CT, Weidner DJ. Compression of pyrope. Am Miner. 1979;64:805.
25. Li L, Weidner DJ, Brodholt J, Alfe D, Price GD. Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope. J Earth Sci. 2011;22:169–75.
26. Liu J, Chen G, Gwanmesia GD, Liebermann RC. Elastic wave velocities of pyrope–majorite garnets Py Mj and Py Mj to 9 GPa. Phys Earth Planet Inter. 2000;120:153–63.
27. Meagher EP. The crystal structures of pyrope and grossularite at elevated temperatures. Am Miner. 1975;60:218–28.
28. Milman V, Winkler B, Nobes RH, Akhmatskaya EV, Pickard CJ, White JA. Garnets: structure, compressibility, dynamics and disorder. JOM. 2000;7(52):22–5. 10.1007/s11837-000-0156-3. DOI: 10.1007/s11837-000-0156-3
29. Mittal R, Chaplot SL, Choudhury N. Lattice dynamics calculations of the phonon spectra and thermodynamic properties of the aluminosilicate garnets pyrope, grossular, and spessartine M3Al2Si3O12 (M = Mg, Ca, and Mn). Phys Rev B. 2001;64:094302.
30. Nakatsuka A, Shimokawa M, Nakayama N, Ohtaka O, Arima H, Okube M, Yoshiasa A. Static disorders of atoms and experimental determination of Debye temperature in pyrope: low- and high-temperature single-crystal X-ray diffraction study. Am Miner. 2011;96:1593–605.
31. Newton RC, Thompson AB, Krupka KM. Heat capacity of synthetic Mg3Al2Si3O12 from 350 to 1000 K and the entropy of pyrope. EOS. 1977;58:523.
32. O’Neill B, Bass JD, Rossman GR, Geiger CA, Langer K. Elastic properties of pyrope. Phys Chem Miner. 1991;17:617–21.
33. Okada Y, Tokumari Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys. 1984;56:314–20.
34. Pavese A. Quasi-harmonic computer simulations of the structural behavior and EOS of pyrope at high pressure and high temperature. Phys Chem Miner. 1999;26:649–57.
35. Sato Y, Akaogi M, Akimoto S. Hydrostatic compression of the synthetic garnets, pyrope and almandine. J Geophys Res Atmosp. 1978;83(B1):335–8. 10.1029/JB083iB01p00335. DOI: 10.1029/JB083iB01p00335
36. Sinogeikin SV, Bass JD, O’Neill B, Gasparik T. Elasticity of tetragonal end-member majorite and solid solutions in the system Mg4Si4O12–Mg3Al2Si3O12. Phys Chem Miner. 1997;24:115–21.
37. Sinogeikin SV, Jackson JM, O’Neill B, Palko JW, Bass JD. Compact high-temperature cell for Brillouin scattering measurements. Rev Sci Instrum. 2000;71:201–6.
38. Skinner BJ. Physical properties of end-members of the garnet group. Am Miner. 1956;41:428–36.
39. Soga N. Elastic constants of garnet under pressure and temperature. J Geophys Res. 1967;72:4227–34.
40. Sumino Y, Nishizawa O. Temperature variation of elastic constants of pyrope-almandine. J Phys Earth. 1978;26:37–47.
41. Suzuki I, Anderson O. Elasticity and thermal expansion of a natural garnet up to 1000 K. J Phys Earth. 1983;31:125–38.
42. Tequi C, Robie RA, Hemingway BS, Neuville DR, Richet P. Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12). Geochim Cosmochim Acta. 1991;55:1005–10.
43. Thieblot L, Roux J, Richet P. High-temperature thermal expansion and decomposition of garnets. Eur J Mineral. 1998;10(1):7–15.
44. Turkin AI, Drebushchak VA, Gusak SN. Synthesis and characterization of Mg3Cr2Si3O12–Fe3Cr2Si3O12 garnet solid solutions. Mater Res Bull. 2002;37:1117–21.
45. Wang Y, Weidner D, Zhang J, Gwarnesia G, Liebermann RC. Thermal equation of state of garnets along the pyrope-majorite join. Phys Earth Planet Inter. 1998;105:59–71.
46. Watanabe H. Thermodynamical properties of synthetic high-pressure compounds relevant to the Earth mantle. In: Akimoto S, editor. High-pressure research in geophysics. Tokyo: Advances in Earth and Planetary Sciences by Center for Academic Publications Japan; 1982. p. 441–64.
47. Zhang L, Ahsbahs H, Kutoglu A. Hydrostatic compression and crystal structure of pyrope to 33 GPa. Phys Chem Miner. 1998;25:301–7.
48. Zou YT, Grêaux S, Irifune T, Whitaker ML, Shinmei T, Higo Y. Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1700 K. Phys Chem Miner. 2012;39:589–98.
|