Инд. авторы: Zakharov Y.N., Zimin A.I., Nudner I.S., Yashin M.E.
Заглавие: Mathematical modeling of a hydraulic flume for carrying out numerical experiments on coastal waves and erosion of cohesive soil
Библ. ссылка: Zakharov Y.N., Zimin A.I., Nudner I.S., Yashin M.E. Mathematical modeling of a hydraulic flume for carrying out numerical experiments on coastal waves and erosion of cohesive soil // Journal of Physics: Conference Series. - 2020. - Vol.1441. - Iss. 1. - Art.012182. - ISSN 1742-6588. - EISSN 1742-6596.
Внешние системы: DOI: 10.1088/1742-6596/1441/1/012182; РИНЦ: 42396857; SCOPUS: 2-s2.0-85079047092;
Реферат: eng: Hydrowave flumes are applied in laboratory experiments in order to study coastal wave impact on shore facilities. The realization of such laboratory experiments is costly and time-consuming concerning its preparation. Thus, it is pressing to apply a mathematical model. The paper presents a material hydrowave flume mathematical model that significantly broadens the capability of the research on coastal wave propagation and its impact on sea floor cohesive soil. The paper considers a solitary wave climb to the shore in the areas of different configuration including sea floor irregularities and a layer of cohesive soil. The wave propagation on the surface and soil shift in the water are modelled by three-component viscous incompressible fluid where air, water and soil are considered as components of non-homogeneous medium. The solution is obtained through finite difference numerical algorithm based on splitting scheme by physical factors and prediction correction method. Results of numerical calculations are presented in the paper. © Published under licence by IOP Publishing Ltd.
Ключевые слова: Soils; Viscous incompressible fluids; Prediction correction; Physical factors; Numerical experiments; Numerical calculation; Laboratory experiments; In-laboratory experiments; Wave propagation; Solitons; Numerical methods; Air; Numerical algorithms;
Издано: 2020
Физ. характеристика: 012182
Конференция: Название: XIII Международная IEEE научно-техническая конференция "Динамика систем, механизмов и машин"
Город: Омск
Страна: Россия
Даты проведения: 2019-11-05 - 2019-11-07
Цитирование: 1. Pelinovsky E N 1996 Gydrodinamica voln tsunami [Tsunamy hydrodynamics] (Nizhny Novgorod: IPF RAN) p 276 2. Boshenyatov B V 2015 Osobennosti modelitovaniya voln tsunami v laboratornoy ustanovke [Special aspects of tsunami modeling in the lab set] Materialy XIX Mezhdunarodnoy konferentsii po vychislitelnoy mekhanike I sovremennim prikladnim programmnim sistemam (Alushta: MAI) pp 384-5 3. Ataie-Ashtiani B and Nik-Khah A 2008 Impulsive waves caused by subaerial landslides Environmental Fluid Mechanics 8-3 pp 263-80 4. Heller V, Bruggemann M, Spinneken J and Rogers B D 2016 Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics Coastal Engineering 109 pp 20-41 5. Miller G S, Andy Take W, Mulligan R P and McDougall S 2017 Tsunamis generated by long and thin granular landslides in a large flume Journal of Geophysical Research: Oceans 122-1 pp 653-68. 6. Katopodes N D 2018 Free-Surface Flow: Computational Methods (Butterworth-Heinemann) p 914 7. Mirjalili S, Jain S S and Dodd M 2017 Interface-capturing methods for two-phase flows: An overview and recent developments Center for Turbulence Research Annual Research Briefs pp 117-35 8. Boshenyatov B V, Lisin D G 2013 Chislennoye modelirovanie voln tipa tsunami v gydrodinamicheskom lotke [Numerical modeling of tsunami in a hydrodynamic flume] Vestnik Tomskogo Universiteta. Matematika i mekhanika 6(26) pp 45-55 9. Shokin Y I, Beisel S A, Fedotova Z I and Chubarov L B 2006 Ob ispolsovanii metodov chislennogo modelirovaniya dlya resheniya prikladnih zadach problemy tsunami [On applying methods of numerical modeling for solution of the applied problems of tsunami] Trudy Mezhdunarodnoy konferentsii "Vychislitelnie I informatsionnie tekhnologii v nauke, tekhnike I obrazovanii" pp 36-51 10. Yavari-Ramshe S and Ataie-Ashtiani B 2016 Numerical simulation of subaerial and submarine landslide generated tsunami waves - recent advances and future challenges Landslides 13-6 pp 1325-68 11. Zakharov Y N, Zimin A I, Stukolov S V, Lebedev V V, Nudner I S and Semenov K K 2016 Chislennoye modelirovanie raboty laboratornogo volnoproductora odinochnih voln na vode [Numerical modeling of operation of a laboratory wave maker of solitary waves on the water] Materialy tretyey mezhdunarodnoy konferentsii "Polyarnaya mekhanika" pp 954-64 12. Semenov K K, Nudner I S, Lebedev V V, Zakharov Y N, Zimin A I and Stukolov S V 2017 Laboratornye I chislennye issledovaniya profilya voln rasprostranyayuchshihsya po rovnomu dnu [Laboratory and numerical studies of tsunami waveform propagating over a plane bed] Fundamentalnaya I prikladnaya hydrofizika 4 pp 5-15 13. Belyaev N D, Geydarov N A, Ivanov K S, Lebedev V V, Nudner I S, Ragulin V V, Zakharov Y N and Zimin A I 2015 Modeling cohesionless and cohesive soils erosion near oil platforms of gravity type International Conference «Stability and Control Processes» in Memory of V.I. Zubov (SCP) pp 5-8 14. Zakharov Y, Zimin A, Nudner I and Ragulin V 2015 Two-component incompressible fluid model for simulating the cohesive soil erosion Applied Mechanics and Materials 725 pp 361-8 15. Zakharov Y, Zimin A and Ragulin V 2015 Two-Component Incompressible Fluid Model for Simulating Surface Wave Propagation Mathematical Modeling of Technological Processes pp 201-10 16. Zakharov Y N and Zimin A I 2017 Numerical simulation of surface waves arising from underwater landslide movement Conference Proceedings «Mathematical and Information Technologies MIT-2016» pp 535-46 17. Zimin A I 2018 Chislennoye modelirovaniye obrazovaniya voln v hydrovolnovom lotke s prepyatstviyem [Numerical modeling of wave origination in a hydrowave flume with a barrier] Trudy XIV vserossijskoy konferentsii "Prikladnye tekhnologii hydroakustiki I hydrofiziki" pp 220-3 18. Patankar S 1984 Chislennie metody resheniya zadach teploobmena I dinamiki zhidkosti [Numerical methods for solving the problems of heat transfer and dynamics of liquid] (Moskva: Energoatomizdat) p 148 19. Belotserkovsky O M 1984 Chislennoye modelirovaniye v mekhanike sploshnih sred [Numerical modeling in mechanics of continuous medium] (Moskva: Nauka) p 520 20. Afanasyev K V and Stukolov S V 2013 Chislennoye modelirovaniye raboty opytnogo generatora odynochnih poverkhnostnih voln [Numerical modeling of operation of a test wave maker for a solitary surface wave] Vestnik Kemerovskogo Gosyudarstvennogo Unuversiteta 3(55) pp 6-14 21. Levin B V and Nosov M A 2005 Fizika tsunami I rodstvennih yavleniy v okeane [Physics of tsunami and similar phenomena in the ocean] (Moskva: Yanus-K) p 360 22. Irtem E, Seyfioglu E and Kabdasli S 2012 Comparison of the effects of permeable, impermeable and monolithic vertical-face submerged breakwaters on tsunami run-up height Twenty-second International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers pp 1-6