Инд. авторы: Лисачев П.Д., Мельников М.Е., Штарк М.Б.
Заглавие: Генетические аспекты фМРТ исследований головного мозга
Библ. ссылка: Лисачев П.Д., Мельников М.Е., Штарк М.Б. Генетические аспекты фМРТ исследований головного мозга // Успехи физиологических наук. - 2020. - Т.51. - № 1. - С.58-71. - ISSN 0301-1798.
Внешние системы: DOI: 10.31857/S0301179820010075; РИНЦ: 42258309;
Реферат: rus: Функциональная магнитнорезонансная томография (фМРТ) предоставляет уникальную возможность неинвазивной динамической оценки активности мозговых структур с высоким пространственным разрешением. Интеграция нейровизуализационных данных и генетической информации позволяет глубже понять принципы работы мозга. В обзоре представлены недавние работы, посвященные изучению генетических основ организации мозга и механизмов нейропсихических заболеваний с использованием фМРТ. В частности, рассмотрены ассоциации транскриптома со структурным коннектомом у животных и человека. Показано, что архитектура глобальных сетей в существенной степени является наследуемой. Охарактеризовано влияние генов, детерминирующих нейрофизиологические процессы на клеточном и субклеточном уровнях, на параметры глобальной активности мозга, включая структуру сетей покоя.
eng: Functional magnetic resonance imaging (fMRI) provides a unique opportunity for non-invasive dynamic assessment of the activity of brain structures with high spatial resolution. Integration of neuroimaging data and genetic information allows a deeper understanding of the principles of the brain activity. The review presents recent work devoted to the study of the genetic basis of the organization of the brain and the mechanisms of neuropsychiatric diseases using fMRI. In particular, associations of a transcriptome with a structural connectome in animals and humans are considered. It is shown that the global network architecture is essentially inheritable. The influence of genes determining neurophysiological processes at the cellular and subcellular levels on the parameters of global brain activity, including the structure of resting state networks, has been characterized.
Ключевые слова: gene expression; genetic polymorphism; genetic risk factors for brain disorders; cognitive abilities; фМРТ; экспрессия генов; когнитивные способности; генетические факторы риска болезней мозга; генетический полиморфизм; fMRI;
Издано: 2020
Физ. характеристика: с.58-71
Цитирование: 1. Анохин К.В. Молекулярная генетика памяти: когнитивная регуляция экспрессии генов в мозге при обучении // В сб.: Успехи функциональной нейрохимии. Санкт-Петербург: Издательство Санкт-Петербургского государственного университета, 2003. С. 33-45. 2. Малых С.Б. Генетически информативные исследования нейрофизиологических характеристик // В кн.: Геномика поведения: детское развитие и образование / Под ред. Малых С.Б., Ковас Ю.В., Гайсиной Д.А. - Томск: Издательский Дом Томского государственного университета, 2016. С. 332-381. 3. Петровский Е.Д., Савостьянов А.Н., Савелов А.А. и др. Влияние полиморфизма аллелей серотонинового транспортера на индивидуальные особенности мозговой гемодинамики у людей в условиях экспериментальной парадигмы "стоп-сигнал" // Вавиловский журнал генетики и селекции. 2014. Т. 18. № 4/3. С. 1281-1288. 4. Штарк М.Б., Коростышевская А.М., Резакова М.В., Савелов А.А. Функциональная магнитно-резонансная томография и нейронауки // Усп. физиол. наук. 2012. Т. 43. № 1. С. 3-29. 5. Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation // Cold Spring Harb. Perspect. Biol. 2015. V. 7. № 1. Article № a021741. https://doi.org/10.1101/cshperspect.a021741 6. Anderson K.M., Krienen F.M., Choi E.Y. et al. Gene expression links functional networks across cortex and striatum // Nat. Commun. 2018. V. 9. № 1. Article № 1428. https://doi.org/10.1038/s41467-018-03811-x 7. Arefin T.M., Mechling A.E., Meirsman A.C. et al. Remodeling of sensorimotor brain connectivity in Gpr88-deficient mice // Brain Connect. 2017. V. 7. № 8. P. 526-540. https://doi.org/10.1089/brain.2017.0486 8. Arnatkeviiūtė A., Fulcher B.D., Pocock R., Fornito A. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome // PLoS Comput. Biol. 2018. V. 14. № 2. Article № e1005989. https://doi.org/10.1371/journal.pcbi.1005989 9. Averbeck B.B., Seo M. The statistical neuroanatomy of frontal networks in the macaque // PLoS Comput. Biol. 2008. V. 4. № 4. Article № e1000050. https://doi.org/10.1371/journal.pcbi.1000050 10. Baruch L., Itzkovitz S., Golan-Mashiach M. et al. Using expression profiles of Caenorhabditis elegans neurons to identify genes that mediate synaptic connectivity // PLoS Comput. Biol. 2008. V. 4. № 7. Article № e1000120. https://doi.org/10.1371/journal.pcbi.1000120 11. Bassett D.S., Sporns O. Network neuroscience // Nat. Neurosci. 2017. V. 20. № 3. P. 353-364. https://doi.org/10.1038/nn.4502 12. Bernard A., Lubbers L.S., Tanis K.Q. et al. Transcriptional architecture of the primate neocortex // Neuron. 2012. V. 73. № 6. P. 1083-1099. https://doi.org/10.1016/j.neuron.2012.03.002 13. Berry A.S., Blakely R.D., Sarter M., Lustig C. Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics // Neuroimage. 2015. V. 108. P. 386-395. https://doi.org/10.1016/j.neuroimage.2014.12.036 14. Berry A.S., Demeter E., Sabhapathy S. et al. Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time-on-task effects // J. Cogn. Neurosci. 2014. V. 26. № 9. P. 1981-1991. https://doi.org/10.1162/jocn_a_00607 15. Berto S., Wang G.Z., Germi J. et al. Human genomic signatures of brain oscillations during memory encoding // Cereb. Cortex. 2018. V. 28. № 5. P. 1733-1748. https://doi.org/10.1093/cercor/bhx083 16. Bota M., Dong H.W., Swanson L.W. Brain architecture management system // Neuroinformatics. 2005. V. 3. № 1. P. 15-48. https://doi.org/10.1385/NI:3:1:015 17. Braitenberg V., Schüz A. Cortex: Statistics and geometry of neuronal connectivity. Berlin: Springer, 1998. 249 p. https://doi.org/10.1007/978-3-662-03733-1 18. Bressler S.L. Large-scale cortical networks and cognition // Brain Res. Brain Res. Rev. 1995. V. 20. № 3. P. 288-304. https://doi.org/10.1016/0165-0173(94)00016-I 19. Buckholtz J.W., Meyer-Lindenberg A. Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness // Neuron. 2012. V. 74. № 6. P. 990-1004. https://doi.org/10.1016/j.neuron.2012.06.002 20. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems // Nat. Rev. Neurosci. 2009. V. 10. № 3. P. 186-198. https://doi.org/10.1038/nrn2575 21. Chiesa P.A., Cavedo E., Lista S. et al. Revolution of resting-state functional neuroimaging genetics in Alzheimer's disease // Trends Neurosci. 2017. V. 40. № 8. P. 469-480. https://doi.org/10.1016/j.tins.2017.06.002 22. Colclough G.L., Smith S.M., Nichols T.E. et al. The heritability of multi-modal connectivity in human brain activity // Elife. 2017. V. 6. Article № e20178. https://doi.org/10.7554/eLife.20178 23. Constable R.T., Scheinost D., Finn E.S. et al. Potential use and challenges of functional connectivity mapping in intractable epilepsy // Front. Neurol. 2013. V. 4. Article № 39. https://doi.org/10.3389/fneur.2013.00039 24. Contreras J.A., Goñi J., Risacher S.L. et al. The structural and functional connectome and prediction of risk for cognitive impairment in older adults // Curr. Behav. Neurosci. Rep. 2015. V. 2. № 4. P. 234-245. https://doi.org/10.1007/s40473-015-0056-z 25. Crossley N.A., Mechelli A., Scott J. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders // Brain. 2014. V. 137. № 8. P. 2382-2395. https://doi.org/10.1093/brain/awu132 26. Diez I., Sepulcre J. Neurogenetic profiles delineate large-scale connectivity dynamics of the human brain // Nat. Commun. 2018. V. 9. № 1. Article № 3876. https://doi.org/10.1038/s41467-018-06346-3 27. Dima D., Jogia J., Collier D. et al. Independent modulation of engagement and connectivity of the facial network during affect processing by CACNA1C and ANK3 risk genes for bipolar disorder // JAMA Psychiatry. 2013. V. 70. № 12. P. 1303-1311. https://doi.org/10.1001/jamapsychiatry.2013.2099 28. Dresler M., Shirer W.R., Konrad B.N. et al. Mnemonic training reshapes brain networks to support superior memory // Neuron. 2017. V. 93. № 5. P. 1227-1235. https://doi.org/10.1016/j.neuron.2017.02.003 29. Erk S., Meyer-Lindenberg A., Linden D.E.J. et al. Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects // Neuroimage. 2014. V. 94. P. 147-154. https://doi.org/10.1016/j.neuroimage.2014.03.007 30. Erk S., Meyer-Lindenberg A., Schnell K. et al. Brain function in carriers of a genome-wide supported bipolar disorder variant // Arch. Gen. Psychiatry. 2010. V. 67. № 8. P. 803-811. https://doi.org/10.1001/archgenpsychiatry.2010.94 31. Esslinger C., Walter H., Kirsch P. et al. Neural mechanisms of a genome-wide supported psychosis variant // Science. 2009. V. 324. № 5927. Article № 605. https://doi.org/10.1126/science.1167768 32. Fakhry A., Ji S. High-resolution prediction of mouse brain connectivity using gene expression patterns // Methods. 2015. V. 73. P. 71-78. https://doi.org/10.1016/j.ymeth.2014.07.011 33. Fan C.C., Smeland O.B., Schork A.J. et al. Beyond heritability: improving discoverability in imaging genetics // Hum. Mol. Genet. 2018. V. 27. № R1. P. R22-R28. https://doi.org/10.1093/hmg/ddy082 34. Fazio L., Pergola G., Papalino M. et al. Transcriptomic context of DRD1 is associated with prefrontal activity and behavior during working memory // Proc. Natl. Acad. Sci. USA. 2018. V. 115. № 21. P. 5582-5587. https://doi.org/10.1073/pnas.1717135115 35. Fornito A., Zalesky A., Bassett D.S. et al. Genetic influences on cost-efficient organization of human cortical functional networks // J. Neurosci. 2011. V. 31. № 9. P. 3261-3270. https://doi.org/10.1523/JNEUROSCI.4858-10.2011 36. Fox A.S., Chang L.J., Gorgolewski K.J., Yarkoni T. Bridging psychology and genetics using large-scale spatial analysis of neuroimaging and neurogenetic data // bioRxiv. 2014. (https://www.biorxiv.org/content/early/2014/12/09/012310) https://doi.org/10.1101/012310 37. Franzmeier N., Rubinski A., Neitzel J. et al. Functional connectivity associated with tau levels in ageing, Alzheimer's, and small vessel disease // Brain. 2019. V. 142. № 4. P. 1093-1107. https://doi.org/10.1093/brain/awz026 38. French L., Pavlidis P. Relationships between gene expression and brain wiring in the adult rodent brain // PLoS Comput. Biol. 2011. V. 7. № 1. Article № e1001049. https://doi.org/10.1371/journal.pcbi.1001049 39. French L., Tan P.P., Pavlidis P. Large-scale analysis of gene expression and connectivity in the rodent brain: insights through data integration // Front. Neuroinf. 2011. V. 5. Article № 12. https://doi.org/10.3389/fninf.2011.00012 40. Fries P. Rhythms for cognition: Communication through coherence // Neuron. 2015. V. 88. № 1. P. 220-235. https://doi.org/10.1016/j.neuron.2015.09.034 41. Friston K.J. Functional and effective connectivity: a review // Brain Connect. 2011. V. 1. № 1. P. 13-36. https://doi.org/10.1089/brain.2011.0008 42. Fulcher B.D., Fornito A. A transcriptional signature of hub connectivity in the mouse connectome // Proc. Natl. Acad. Sci. USA. 2016. V. 113. № 5. P. 1435-1440. https://doi.org/10.1073/pnas.1513302113 43. Gamazon E.R., Wheeler H.E., Shah K.P. et al. A gene-based association method for mapping traits using reference transcriptome data // Nat. Genet. 2015. V. 47. № 9. P. 1091-1098. https://doi.org/10.1038/ng.3367 44. Ganglberger F., Kaczanowska J., Penninger J.M. et al. Predicting functional neuroanatomical maps from fusing brain networks with genetic information // NeuroImage. 2018. V. 170. P. 113-120. https://doi.org/10.1016/j.neuroimage.2017.08.070 45. Glahn D.C., Winkler A.M., Kochunov P. et al. Genetic control over the resting brain // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 3. P. 1223-1228. https://doi.org/10.1073/pnas.0909969107 46. Hawrylycz M., Miller J.A., Menon V. et al. Canonical genetic signatures of the adult human brain // Nat. Neurosci. 2015. V. 18. № 12. P. 1832-1844. https://doi.org/10.1038/nn.4171 47. Heck A., Fastenrath M., Ackermann S. et al. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity // Neuron. 2014. V. 81. № 5. P. 1203-1213. https://doi.org/10.1016/j.neuron.2014.01.010 48. Hellwig B. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex // Biol. Cybern. 2000. V. 82. № 2. P. 111-121. https://doi.org/10.1007/PL00007964 49. Ji S., Fakhry A., Deng H. Integrative analysis of the connectivity and gene expression atlases in the mouse brain // Neuroimage. 2014. V. 84. P. 245-253. https://doi.org/10.1016/j.neuroimage.2013.08.049 50. Kaufman A., Dror G., Meilijson I., Ruppin E. Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity // PLoS Comput. Biol. 2006. V. 2. № 12. Article № e167. https://doi.org/10.1371/journal.pcbi.0020167 51. Kepa A., Martinez Medina L., Erk S. et al. Associations of the intellectual disability gene MYT1L with Helix-Loop-Helix gene expression, hippocampus volume and hippocampus activation during memory retrieval // Neuropsychopharmacology. 2017. V. 42. № 13. P. 2516-2526. https://doi.org/10.1038/npp.2017.91 52. Kong R., Li J., Orban C. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion // Cereb. Cortex. 2019. V. 29. № 6. P. 2533-2551. https://doi.org/10.1093/cercor/bhy123 53. Kong X.Z., Song Y., Zhen Z., Liu J. Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese // Cereb. Cortex. 2017. V. 27. № 2. P. 1326-1336. https://doi.org/10.1093/cercor/bhv322 54. Krienen F.M., Yeo B.T.T., Ge T. et al. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain // Proc. Natl Acad. Sci. USA. 2016. V. 113. № 4. P. E469-E478. https://doi.org/10.1073/pnas.1510903113 55. Krug A., Witt S.H., Backes H. et al. A genome-wide supported variant in CACNA1C influences hippocampal activation during episodic memory encoding and retrieval // Eur. Arch. Psychiatry Clin. Neurosci. 2014. V. 264. № 2. P. 103-110. https://doi.org/10.1007/s00406-013-0428-x 56. Lein E.S., Hawrylycz M.J., Ao N. et al. Genome-wide atlas of gene expression in the adult mouse brain // Nature. 2007. V. 445. № 7124. P. 168-176. https://doi.org/10.1038/nature05453 57. Liégeois F., Baldeweg T., Connelly A. et al. Language fMRI abnormalities associated with FOXP2 gene mutation // Nat. Neurosci. 2003. V. 6. № 11. P. 1230-1237. https://doi.org/10.1038/nn1138 58. Liégeois F., Morgan A.T., Connelly A., Vargha-Khadem F. Endophenotypes of FOXP2: dysfunction within the human articulatory network // Eur. J. Paediatr. Neurol. 2011. V. 15. № 4. P. 283-288. https://doi.org/10.1016/j.ejpn.2011.04.006 59. Lisachev P.D., Shtark M.B. Long-term potentiation-associated gene expression: involvement of the tumour protein p53 // In: The Hippocampus - Plasticity and Functions / Ed. A. Stuchlik - London: IntechOpen, 2018. P. 49-64. https://doi.org/10.5772/intechopen.73219 60. Mattar M.G., Wymbs N.F., Bock A.S. et al. Predicting future learning from baseline network architecture // Neuroimage. 2018. V. 172. P. 107-117. https://doi.org/10.1016/j.neuroimage.2018.01.037 61. McClearn G.E., Johansson B., Berg S. et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old // Science. 1997. V. 276. № 5318. P. 1560-1563. https://doi.org/10.1126/science.276.5318.1560 62. McFarland D.J. How neuroscience can inform the study of individual differences in cognitive abilities // Rev. Neurosci. 2017. V. 28. № 4. P. 343-362. https://doi.org/10.1515/revneuro-2016-0073 63. McIntosh A.R. Towards a network theory of cognition // Neural Netw. 2000. V. 13. № 8-9. P. 861-870. https://doi.org/10.1016/S0893-6080(00)00059-9 64. Mears D., Pollard H.B. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease // J. Neurosci. Res. 2016. V. 94. № 6. P. 590-605. https://doi.org/10.1002/jnr.23705 65. Mills B.D., Grayson D.S., Shunmugavel A. et al. Correlated gene expression and anatomical communication support synchronized brain activity in the mouse functional connectome // J. Neurosci. 2018. V. 38. № 25. P. 5774-5787. https://doi.org/10.1523/JNEUROSCI.2910-17.2018 66. Miranda-Dominguez O., Feczko E., Grayson D.S. et al. Heritability of the human connectome: A connectotyping study // Netw. Neurosci. 2018. V. 2. № 2. P. 175-199. https://doi.org/10.1162/netn_a_00029 67. Moseley R.L., Ypma R.J., Holt R.J. et al. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents // Neuroimage Clin. 2015. V. 9. P. 140-152. https://doi.org/10.1016/j.nicl.2015.07.015 68. Mufford M.S., Stein D.J., Dalvie S. et al. Neuroimaging genomics in psychiatry - a translational approach // Genome Med. 2017. V. 9. № 1. Article № 102. https://doi.org/10.1186/s13073-017-0496-z 69. Panizzon M.S., Neale M.C., Docherty A.R. et al. Genetic and environmental architecture of changes in episodic memory from middle to late middle age // Psychol. Aging. 2015. V. 30. № 2. P. 286-300. https://doi.org/10.1037/pag0000023 70. Pantazatos S.P., Li X. Commentary: BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241-4. // Front. Neurosci. 2017. V. 11. Article № 412. https://doi.org/10.3389/fnins.2017.00412 71. Park M.T.M., Raznahan A., Shaw P. et al. Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across autism, ADHD and schizophrenia // J. Psychiatry Neurosci. 2018. V. 43. № 3. P. 201-212. https://doi.org/10.1503/jpn.170094 72. Peng Q., Schork A., Bartsch H. et al. Conservation of distinct genetically-mediated human cortical pattern // PLoS Genet. 2016. V. 12. № 7. Article № e1006143. https://doi.org/10.1371/journal.pgen.1006143 73. Pergola G., Di Carlo P., Andriola I. et al. Combined effect of genetic variants in the GluN2B coding gene (GRIN2B) on prefrontal function during working memory performance // Psychol. Med. 2016. V. 46. № 6. P. 1135-1150. https://doi.org/10.1017/S0033291715002639 74. Pietzuch M., King A.E., Ward D.D., Vickers J.C. The influence of genetic factors and cognitive reserve on structural and functional resting-state brain networks in aging and Alzheimer's disease // Front. Aging Neurosci. 2019. V. 11. Article № 30. https://doi.org/10.3389/fnagi.2019.00030 75. Polimanti R., Meda S.A., Pearlson G.D. et al. S100A10 identified in a genome-wide gene × cannabis dependence interaction analysis of risky sexual behaviours // J. Psychiatry Neurosci. 2017. V. 42. № 4. P. 252-261. https://doi.org/10.1503/jpn.160189 76. Polimanti R., Yang C., Zhao H., Gelernter J. Dissecting ancestry genomic background in substance dependence genome-wide association studies // Pharmacogenomics. 2015. V. 16. № 13. P. 1487-1498. https://doi.org/10.2217/pgs.15.91 77. Quintana D.S., Rokicki J., van der Meer D. et al. Oxytocin pathway gene networks in the human brain // Nat. Commun. 2019. V. 10. № 1. Article № 668. https://doi.org/10.1038/s41467-019-08503-8 78. Raum H., Dietsche B., Nagels A. et al. A genome-wide supported psychiatric risk variant in NCAN influences brain function and cognitive performance in healthy subjects // Hum. Brain Mapp. 2015. V. 36. № 1. P. 378-390. https://doi.org/10.1002/hbm.22635 79. Richiardi J., Altmann A., Milazzo A.C. et al. Correlated gene expression supports synchronous activity in brain networks // Science. 2015. V. 348. № 6240. P. 1241-1244. https://doi.org/10.1126/science.1255905 80. Rodríguez-Rojo I.C., Cuesta P., López M.E. et al. BDNF Val66Met polymorphism and gamma band disruption in resting state brain functional connectivity: A magnetoencephalography study in cognitively intact older females // Front. Neurosci. 2018. V. 12. Article № 684. https://doi.org/10.3389/fnins.2018.00684 81. Roostaei T., Sadaghiani S., Park M.T. et al. Channelopathy-related SCN10A gene variants predict cerebellar dysfunction in multiple sclerosis // Neurology. 2016. V. 86. № 5. P. 410-417. https://doi.org/10.1212/WNL.0000000000002326 82. Rubinov M., Sporns O. Complex network measures of brain connectivity: uses and interpretations // Neuroimage. 2010. V. 52. № 3. P. 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 83. Rubinov M., Ypma R.J., Watson C., Bullmore E.T. Wiring cost and topological participation of the mouse brain connectome // Proc. Natl. Acad. Sci. USA. 2015. V. 112. № 32. P. 10032-10037. https://doi.org/10.1073/pnas.1420315112 84. Sadaghiani S., Ng B., Altmann A. et al. Overdominant effect of a CHRNA4 polymorphism on cingulo-opercular network activity and cognitive control // J. Neurosci. 2017. V. 37. № 40. P. 9657-9666. https://doi.org/10.1523/JNEUROSCI.0991-17.2017 85. Scannell J.W., Blakemore C., Young M.P. Analysis of connectivity in the cat cerebral cortex // J. Neurosci. 1995. V. 15. № 2. P. 1463-1483. https://doi.org/10.1523/JNEUROSCI.15-02-01463.1995 86. Schmitt J.E., Lenroot R.K., Wallace G.L. et al. Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings // Cereb. Cortex. 2008. V. 18. № 8. P. 1737-1747. https://doi.org/10.1093/cercor/bhm211 87. Scult M.A., Hariri A.R. A brief introduction to the neurogenetics of cognition-emotion interactions // Curr. Opin. Behav. Sci. 2018. V. 19. P. 50-54. https://doi.org/10.1016/j.cobeha.2017.09.014 88. Shtark M.B., Kozlova L.I., Bezmaternykh D.D. et al. Neuroimaging study of alpha and beta EEG biofeedback effects on neural networks // Appl. Psychophysiol. Biofeedback. 2018. V. 43. № 2. P. 169-178. https://doi.org/10.1007/s10484-018-9396-2 89. Sinclair B., Hansell N.K., Blokland G.A. et al. Heritability of the network architecture of intrinsic brain functional connectivity // Neuroimage. 2015. V. 121. P. 243-252. https://doi.org/10.1016/j.neuroimage.2015.07.048 90. Smit D.J., Stam C.J., Posthuma D. et al. Heritability of "small-world" networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity // Hum. Brain Mapp. 2008. V. 29. № 12. P. 1368-1378. https://doi.org/10.1002/hbm.20468 91. Stevens A.A., Tappon S.C., Garg A., Fair D.A. Functional brain network modularity captures inter- and intra-individual variation in working memory capacity // PLoS One. 2012. V. 7. № 1. Article № e30468. https://doi.org/10.1371/journal.pone.0030468 92. Suo X.S., Lei D.L., Li L.L. et al. Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders // J. Psychiatry Neurosci. 2018. V. 43. № 6. Article № 427. https://doi.org/10.1503/jpn.170214 93. Trost S., Diekhof E.K., Mohr H. et al. Investigating the impact of a genome-wide supported bipolar risk variant of MAD1L1 on the human reward system // Neuropsychopharmacology. 2016. V. 41. № 11. P. 2679-2687. https://doi.org/10.1038/npp.2016.70 94. van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: a review on resting-state fMRI functional connectivity // Eur. Neuropsychopharmacol. 2010. V. 20. № 8. P. 519-534. https://doi.org/10.1016/j.euroneuro.2010.03.008 95. Varadan V., Miller D.M. 3rd, Anastassiou D. Computational inference of the molecular logic for synaptic connectivity in C. elegans // Bioinformatics. 2006. V. 22. № 14. P. e497-e506. https://doi.org/10.1093/bioinformatics/btl224 96. Vértes P.E., Rittman T., Whitaker K.J. et al. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016. V. 371. № 1705. Article № 20150362. https://doi.org/10.1098/rstb.2015.0362 97. Vecchio F., Miraglia F., Rossini P.M. Connectome: Graph theory application in functional brain network architecture // Clinical Neurophysiology Practice. 2017. V. 2. P. 206-213. doi.org/https://doi.org/10.1016/j.cnp.2017.09.003 98. Volk H.E., McDermott K.B., Roediger H.L.3rd, Todd R.D. Genetic influences on free and cued recall in long-term memory tasks // Twin Res. Hum. Genet. 2006. V. 9. № 5. P. 623-631. https://doi.org/10.1375/183242706778553462 99. Wang C., Zhang Y., Liu B. et al. Dosage effects of BDNF Val66Met polymorphism on cortical surface area and functional connectivity // J. Neurosci. 2014. V. 34. P. 2645-2651. https://doi.org/10.1523/JNEUROSCI.3501-13.2014 100. Wang G.Z., Belgard T.G., Mao D. et al. Correspondence between resting-state activity and brain gene expression // Neuron. 2015. V. 88. № 4. P. 659-666. https://doi.org/10.1016/j.neuron.2015.10.022 101. Wang J., Zuo X., He Y. Graph-based network analysis of resting-state functional MRI // Front. Syst. Neurosci. 2010. V. 4. Article № 16. https://doi.org/10.3389/fnsys.2010.00016 102. Wen J., Goyal M.S., Astafiev S.V. et al. Genetically defined cellular correlates of the baseline brain MRI signal // Proc. Natl. Acad. Sci. USA. 2018. V. 115. № 41. P. E9727-E9736. https://doi.org/10.1073/pnas.1808121115 103. White J.G., Southgate E., Thomson J.N., Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans // Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986. V. 314. № 1165. P. 1-340. https://doi.org/10.1098/rstb.1986.0056 104. Wolf L., Goldberg C., Manor N. et al. Gene expression in the rodent brain is associated with its regional connectivity // PLoS Comput Biol. 2011. V. 7. № 5. Article № e1002040. https://doi.org/10.1371/journal.pcbi.1002040 105. Zapala M.A., Hovatta I., Ellison J.A. et al. Adult mouse brain gene expression patterns bear an embryologic imprint // Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 29. P. 10357-10362. https://doi.org/10.1073/pnas.0503357102 106. Zhang N., Liu H., Qin W. et al. APOE and KIBRA interactions on brain functional connectivity in healthy young adults // Cereb. Cortex. 2017. V. 27. № 10. P. 4797-4805. https://doi.org/10.1093/cercor/bhw276 107. Yang Z., Zuo X.-N., McMahon K.L. et al. Genetic and environmental contributions to functional connectivity architecture of the human brain // Cereb. Cortex. 2016. V. 26. № 5. P. 2341-2352. https://doi.org/10.1093/cercor/bhw027 108. Yarkoni T., Poldrack R.A., Nichols T.E. et al. Large-scale automated synthesis of human functional neuroimaging data // Nat. Methods. 2011. V. 8. № 8. P. 665-670. https://doi.org/10.1038/nmeth.1635 109. Yin Y., Hou Z., Wang X. et al. The BDNF Val66Met polymorphism, resting-state hippocampal functional connectivity and cognitive deficits in acute late-onset depression // J. Affect. Disord. 2015. V. 183. P. 22-30. https://doi.org/10.1016/j.jad.2015.04.050