Инд. авторы: | Binjumah W.M., Adams R., Davey N., Sun Y., Redyuk A. |
Заглавие: | Investigating optical transmission error correction using wavelet transforms |
Библ. ссылка: | Binjumah W.M., Adams R., Davey N., Sun Y., Redyuk A. Investigating optical transmission error correction using wavelet transforms // 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2017 (Bruges, Belgium, 26.04-28.04.2017): Proceedings. - 2017. - P.447-452. |
Внешние системы: | РИНЦ: 41616168; |
Реферат: | eng: Reducing bit error rate and improving performance of mod- ern coherent optical communication system is a significant issue. As the distance travelled by the information signal increases, bit error rate will degrade. Support Vector Machines are the most up to date machine learn- ing method for error correction in optical transmission systems. Wavelet transform has been a popular method to signals processing. In this study, results show that the bit error rate can be improved by using classification based on wavelet transforms (WT) and support vector machine (SVM). |
Издано: | 2017 |
Физ. характеристика: | с.447-452 |
Конференция: | Название: 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Аббревиатура: ESANN 2017 Город: Bruges Страна: Belgium Даты проведения: 2017-04-26 - 2017-04-28 |
Цитирование: | 1. Greg Bernstein, Bala Rajagopalan, and Debanjan Saha. Optical network control: Archi-tecture, protocols, and standards. Addison-Wesley Longman Publishing Co., Inc., 2003. 2. Alex Metaxas, Alexei Redyuk, Yi Sun, Alex Shafarenko, Neil Davey, and Rod Adams. Linear support vector machines for error correction in optical data transmission. In In-ternational Conference on Adaptive and Natural Computing Algorithms, pages 438-445. Springer, 2013. 3. Olivier Rioul and Martin Vetterli. Wavelets and signal processing. IEEE signal processing magazine, 8(LCAV-ARTICLE-1991-005):14-38, 1991. 4. Surachet Kanprachar. Modeling and analysis of the effects of impairments in fiber optic links. 1999. 5. Weam Binjumah, Alexey Redyuk, Neil Davey, Rod Adams, and Yi Sun. Reducing bit error rate of optical data transmission with neighboring symbol information using a linear support vector machine. In Proceedings of the ECMLPKDD 2015 Doctoral Consortium(2015), pages 67-74. Aalto University, 2015. 6. Alex J Smola and Bernhard Schölkopf. Learning with kernels. Citeseer, 1998. 7. Sang-Hong Lee and Joon S Lim. Parkinson's disease classification using gait characteristics and wavelet-based feature extraction. Expert Systems with Applications, 39(8):7338-7344, 2012. 8. Zhiwen Liu, Hongrui Cao, Xuefeng Chen, Zhengjia He, and Zhongjie Shen. Multi-fault classification based on wavelet svm with pso algorithm to analyze vibration signals from rolling element bearings. Neurocomputing, 99:399-410, 2013. 9. James S Walker. A primer on wavelets and their scientific applications. CRC press, 2008. |