Цитирование: | 1. Barakhnin V.B., Kuchin Ya.I., Muhamedyev R.I. (2018). On the problem of identification of fake news and of the algorithms for monitoring them. Proceedings of the IIIInternational Conference on Informatics and Applied Mathematics, Almaty, Kazakhstan, 26-29 September 2018, pp.113-118 (in Russian).
2. Shokin Yu.I., Fedotov A.M., Barakhnin V.B. (2010) Technologies for construction of processing software systems dealing with semistructured documents aimed at information support of scientific activity. Computational Technologies, vol. 15, no 6, pp. 111-125 (in Russian).
3. Barakhnin V.B., Kozhemyakina O.Yu., Borzilova Yu.S. (2019) The development of the information system of the representation of the complex analysis results for the poetic texts. Vestnik NSU. Series: Information Technologies, vol. 17, no 1, pp. 5-17 (in Russian). DOI: 10.25205/1818-7900-2019-17-1-5-17.
4. Bolshakova E.I., Klishinskii E.S., Lande D.V., Noskov A.A., Peskova O.V., Yagunova E.V. (2011) Automatic natural language text processing and computer linguistics. Moscow: MIEM (in Russian).
5. Pang B., Lee L., Vaithyanathan S. (2002) Thumbs up? Sentiment classification using machine learning techniques. Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), Philadelphia, PA, USA, 6-7July 2002, pp. 79-86. DOI: 10.3115/1118693.1118704.
6. Choi Y., Cardie Cl., Riloff E., Patwardhan S. (2005) Identifying sources of opinions with conditional random fields and extraction patterns. Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT 2005). Vancouver, British Columbia, Canada, 6-8 October 2005, pp. 355-362.
7. Manning C.D. (2011) Part-of-speech tagging from 97% to 100%: Is it time for some linguistics? Proceedings of the 12th International Conference "Computational Linguistics and Intelligent T ext Processing" (CICLing 2011), Tokyo, Japan, 20-26 February 2011, pp. 171-189.
8. Mukhamedyev R., et al. (2020) Assessment of the dynamics of publication activity in the field of natural language processing and deep learning. Proceedings of the 4th International Conference on Digital Transformation and Global Society, St. Petersburg, Russia, 19-21 June 2019. Springer, 2020 (in press).
9. Tarasov D.S. (2015) Deep recurrent neural networks for multiple language aspect-based sentiment analysis. Computational Linguistics and Intellectual Technologies: Proceedings of Annual International Conference "Dialogue-2015", no 14 (21), vol. 2, pp. 65-74.
10. Garcia-Moya L., Anaya-Sanchez H., Berlanga-Llavori R. (2013) Retrieving product features and opinions from customer reviews. IEEE Intelligent Systems, vol. 28, no 3, pp. 19-27. DOI: 10.1109/MIS.2013.37.
11. Mavljutov R.R., Ostapuk N.A. (2013) Using basic syntactic relations for sentiment analysis. Proceedings of the International Conference "Dialogue 2013", Bekasovo, Russia, 29May - 2 June 2013, pp. 101-110.
12. Prabowo R., Thelwall M. (2009) Sentiment analysis: A combined approach. Journal of Informetrics, vol. 3, no 2, pp. 143-157. DOI: 10.1016/j.joi.2009.01.003.
13. Dai W., Xue G.-R., Yang Q., Yu Y. (2007) Transferring naive Bayes classifiers for text classification. Proceedings of the 22nd National Conference on Artificial intelligence (AAAI 07). Vancouver, British Columbia, Canada, 26-27 July 2007, vol. 1, pp. 540-545.
14. Cortes C., Vapnik V. (1995) Support-vector networks. Machine Learning, vol. 20, no 3, pp. 273-297. DOI: 10.1023/A:1022627411411.
15. Friedman J.H. (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, vol. 29, no 5, pp. 1189-1232.
16. Zhang G.P. (2000) Neural networks for classification: A survey. IEEE Transactions on Systems, Man, and Cybernetics. Part C (Applications and Reviews), vol. 30, no 4, pp. 451-462.
17. Schmidhuber J. (2015) Deep learning in neural networks: An overview. Neural Networks, no 61, pp. 85-117. DOI: 10.1016/j.neunet.2014.09.003.
18. Devlin J., Chang M.-W., Lee K., Toutanova K. (2018) BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.
19. Vladimirova T.N., Vinogradova M.V., Vlasov A.I., Shatsky A.A. (2019) Assessment of news items objectivity in mass media of countries with intelligence systems: The Brexit case. Media Watch, vol. 10, no 3, pp. 471-483. DOI: 10.15655/mw/2019/v10i3/49680.
20. Romanov A.S., Vasilieva M.I., Kurtukova A.V., Meshcheryakov R.V. (2018) Sentiment analysis of text using machine learning techniques. Proceedings of the 2nd International Conference " R. Piotrowski's Readings in Language Engineering and Applied Linguistics (Saint-Petersburg, 2017), pp. 86-95 (in Russian).
21. Barakhnin V.B., Mukhamedyev R.I., Mussabaev R.R., Kozhemyakina O.Yu., Issayeva A., Kuchin Ya.I., Murzakhmetov S.B., Yakunin K.O. (2019) Methods to identify the destructive information. Journal of Physics: Conference Series, vol. 1405, no 1. DOI: 10.1088/1742-6596/1405/1/012004.
22. Barakhnin V.B., Kozhemyakina O.Y., Zabaykin A.V. (2015) The algorithms of complex analysis of Russian poetic texts for the purpose of automation of the process of creation of metric reference books and concordances. CEUR Workshop Proceedings, vol. 1536, pp. 138-143.
|