Инд. авторы: Medvedev S.B., Vaseva I.A., Chekhovskoy I.S., Fedoruk M.P.
Заглавие: A Novel Fourth-Order Difference Scheme for the Direct Zakharov-Shabat Problem
Библ. ссылка: Medvedev S.B., Vaseva I.A., Chekhovskoy I.S., Fedoruk M.P. A Novel Fourth-Order Difference Scheme for the Direct Zakharov-Shabat Problem // 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, CLEO/Europe-EQEC (Munich, Germany 23.06-27.06.2019). - 2019. - Art.8872769. - ISBN: 978-172810469-0.
Внешние системы: DOI: 10.1109/CLEOE-EQEC.2019.8872769; РИНЦ: 41685809; SCOPUS: 2-s2.0-85074661769; WoS: 000630002701090;
Реферат: eng: The numerical implementation of the nonlinear Fourier transformation (NFT) for the nonlinear Shrodinger equation (NLSE) requires effective numerical algorithms for each stage of the method. The very first step in this scheme is the solution of the direct scattering problem for the Zakharov-Shabat system. One of the most efficient methods for the solution of this problem is the second-order Boffetta-Osborne algorithm [1]. A review of numerical methods for direct NFT associated with the focusing NLSE is presented in [2]. Among the methods considered in this paper only the Runge-Kutta method is of fourth order of approximation. However, the application of the Runge-Kutta method is limited by the potentials specified analytically. The NFT algorithms of higher order presented recently in [3] require special nonuniform distribution of the signal. © 2019 IEEE.
Издано: 2019
Физ. характеристика: 8872769
Конференция: Название: Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
Аббревиатура: CLEO/Europe-EQEC-2019
Город: Munich
Страна: Germany
Даты проведения: 2019-06-23 - 2019-06-27
Цитирование: 1. G. Boffetta and A. R. Osborne, "Computation of the direct scattering transform for the nonlinear Schrödinger equation, " J. Comput. Phys. 102(2), 252-264 (1992). 2. A. Vasylchenkova, J. E. Prilepsky, D. Shepelsky, and A. Chattopadhyay, "Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrödinger equation, " Commun. Nonlinear Sci. Numer. Simul. 68, 347-371 (2019). 3. S. Chimmalgi, P. J. Prins, and S. Wahls, "Nonlinear Fourier Transform Algorithm Using a Higher Order Exponential Integrator, " in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper SpM4G. 5.