Инд. авторы: Chekhovskoy I.S., Shtyrina O.V., Fedoruk M.P., Medvedev S.B., Turitsyn S.K.
Заглавие: Nonlinear fourier transform for analysis of coherent structures in dissipative systems
Библ. ссылка: Chekhovskoy I.S., Shtyrina O.V., Fedoruk M.P., Medvedev S.B., Turitsyn S.K. Nonlinear fourier transform for analysis of coherent structures in dissipative systems // 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, CLEO/Europe-EQEC (Munich, Germany 23.06-27.06.2019). - 2019. - Art.8872485. - ISBN: 978-172810469-0.
Внешние системы: DOI: 10.1109/CLEOE-EQEC.2019.8872485; РИНЦ: 41687739; SCOPUS: 2-s2.0-85074669011; WoS: 000630002700787;
Реферат: eng: The conventional Fourier transform is widely used mathematical methods in science and technology. It allows representing the signal/field under study as a set of spectral harmonics, that it many situations simplify understanding of such signal/field. In some linear equations, where spectral harmonics evolve independently of each other, the Fourier transform provides a straightforward description of otherwise complex dynamics. Something similar is available for certain classes of nonlinear equations that are integrable using the inverse scattering transform [1,2], also known as the nonlinear Fourier transform (NFT). Here we discuss potential of its application in dissipative, non-integrable systems to characterize coherent structures. We present a new approach for describing the evolution of a nonlinear system considering the cubic Ginzburg-Landau Equation (CGLE) as a particularly important example in the context of laser system modeling: [Equation Present] . © 2019 IEEE.
Издано: 2019
Физ. характеристика: 8872485
Конференция: Название: Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
Аббревиатура: CLEO/Europe-EQEC-2019
Город: Munich
Страна: Germany
Даты проведения: 2019-06-23 - 2019-06-27
Цитирование: 1. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, "Method for Solving the Korteweg-deVries Equation," Phys. Rev. Lett. 19, 1095 (1967). 2. V. E. Zakharov and A. B. Shabat, "Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Non-Linear Media," JETP 34, 62-69 (1972).