Цитирование: | 1. B. Achchab, A. Agouzal, A. Guessab, and Y. Zaim, An extended family of nonconforming quasi-Wilson elements for solving elasticity problem, Appl. Math. Comput., 344/345 (2019), pp. 1-19.
2. M. Bachar and A. Guessab, Characterization of the existence of an enriched linear finite element approximation using biorthogonal systems, Results Math., 70 (2016), pp. 401-413.
3. M. Bachar and A. Guessab, A simple necessary and sufficient condition for the enrichment of the Crouzeix-Raviart element, Appl. Anal. Discrete Math., 10 (2016), pp. 378-393.
4. M. Bachar, A. Guessab, O. Mohammed, and Y. Zaim, New cubature formulas and Hermite-Hadamard type inequalities using integrals over some hyperplanes in the d-dimensional hyper-rectangle, Appl. Math. Comput., 315 (2017), pp. 347-362.
5. E. B. Chin, J. B. Lasserre, and N. Sukumar, Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech., 56 (2015), pp. 967-981.
6. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
7. M. Crouzeix and P. A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numer., 7 (1973), pp. 33-76.
8. Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations: Applications and algorithms, SIAM Rev., 41 (1999), pp. 637-676, https://doi.org/10.1137/S0036144599352836.
9. A. Guessab and G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comp., 73 (2004), pp. 1365-1384.
10. A. Guessab and B. Semisalov, A multivariate version of Hammer's inequality and its consequences in numerical integration, Results Math., 73 (2018), 33.
11. A. Guessab and B. Semisalov, Numerical integration using integrals over hyperplane sections of simplices in a triangulation of a polytope, BIT, 58 (2018), pp. 613-660.
12. A. Guessab and Y. Zaim, A unified and general framework for enriching finite element approximations, in Progress in Approximation Theory and Applicable Complex Analysis, Springer Optim. Appl. 117, Springer, Cham, 2017, pp. 491-519.
13. J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications, Texts Appl. Math. 54, Springer-Verlag, New York, 2008.
14. J. B. Lasserre, Integration on a convex polytope, Proc. Amer. Math. Soc., 12 (1998), pp. 2433-2441.
15. A. Ouazzi and M. Turek, Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations, J. Numer. Math., 15 (2007), pp. 299-322.
16. C. Talischi, G. Paulino, A. Pereira, and I. F. M. Menezes, Polymesher: A general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidisc. Optim., 45 (2012), pp. 309-328.
|