Инд. авторы: Доронин С.В., Москвичев Е.В.
Заглавие: Анализ собственных частот колебаний системы «полезный груз-ложемент» для выведения на орбиту
Библ. ссылка: Доронин С.В., Москвичев Е.В. Анализ собственных частот колебаний системы «полезный груз-ложемент» для выведения на орбиту // Динамика систем, механизмов и машин. - 2019. - Т.7. - № 4. - С.40-46. - ISSN 2310-9793.
Внешние системы: РИНЦ: 41432194;
Реферат: rus: Для выведения на орбиту приборы и аппаратура (полезный груз) размещаются в транспортном ложементе, изготовленном из различных полимерных материалов. Одна из функций ложемента заключается в предотвращении низкочастотных колебаний груза, которые регламентируются требованиями прочности. В связи с этим актуальна задача определения собственных частот колебаний системы «полезный груз-ложемент». Эти частоты зависят от физико-механических характеристик и размеров ложемента, массы и размеров полезного груза. В работе представлены результаты экспериментального определения жесткостных характеристик материалов ложемента и расчетного анализа собственных частот колебаний системы «полезный груз-ложемент».
Ключевые слова: колебания; полезный груз; ложемент;
Издано: 2019
Физ. характеристика: с.40-46
Цитирование: 1. Доронин А. М., Соболева В. А. Собственные колебания круглой пластинки, лежащей на переменном упругом основании типа Винклера // Вестник Нижегородского университета им. Н. И. Лобачевского. 2014. № 4 (1). С. 254-258. 2. Леоненко Д. В. Колебания круговых трехслойных пластин на упругом основании Пастернака // Экологический вестник научных центров ЧЭС. 2014. № 1. С. 59-63. 3. Kondratov D. V., Mogilevich L. I., Popov V. S., Popova A. A. Hydroelastic oscillations of a circular plate, resting on Winkler foundation // Journal of Physics: Conf. Series. 2018. Vol. 944. Р. 012057. DOI:10.1088/1742- 6596/944/1/012057. 4. Zhang H., Shi D., Zha S., Wang Q. Sound-vibration behaviors of the thin orthotropic rectangular fluidstructure coupled system resting on varying elastic Winkler and Pasternak foundations // Results in Physics. 2018. Vol. 11. Р. 188-200. 5. Ahmed M. K. Natural frequencies and mode shapes of variable thickness elastic cylindrical shells resting on a Pasternak foundation // Journal of Vibration and Control. 2014. Vol. 17 (8). Р. 1158-1172. 6. Bakhtiari-Nejad F., Bideleh S. M. M. Nonlinear free vibration analysis of prestressed circular cylindrical shells on the Winkler/Pasternak foundation // Thin-Walled Structures. 2012. Vol. 53. Р. 26-39. 7. Kamarian S., Sadighi M., Shakeri M., Yas M.H. Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation // Journal of Sandwich Structures and Materials. 2014. Vol. 16 (5). Р. 511-533. 8. Kim Y. W. Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge // Composites: Part B. 2015. Vol. 70. P. 263-276. 9. Paliwal D. N., Pandey R. K., Nath T. Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations // International Journal of Pressure Vessels & Piping. 1996. Vol. 69. Р. 79-89. 10. Soares R. M., Gonçalves P. B. Nonlinear vibrations of a rectangular hyperelastic membrane resting on a nonlinear elastic foundation // Meccanica. DOI 10.1007/s11012-017-0755-5. 11. Lewandowski R., Świtka R. Unilateral plate contact with the elastic-plastic Winkler-type foundation // Computers & Structures. 1991. Vol. 39, no. 6. P. 641-651. 12. Hong T., Teng J. G., Luo Y. F. Axisymmetric shells and plates on tensionless elastic foundations // International Journal of Solid and Structures. 1999. Vol. 36. Р. 5277-5300. 13. Kerr A. D. On the formal development of elastic foundation models // Ingenieur-Archiv. 1984. Vol. 54. 455- 14. Bochkarev S. A. Free vibrations of a cylindrical shell partially resting on elastic foundation // Journal of Applied Mechanics and Technical Physics. 2018. Vol. 59. no. 7. Pp. 1242-1250. 15. Tj H.G., Mikami T., Kanie S., Sato M. Free vibration characteristics of cylindrical shells partially buried in elastic foundations // Journal of Sound and Vibration. 2006. 290. 785-793. 16. Friswell M. I., Adhikari S., Lei Y. Vibration analysis of beams with non-local foundations using the finite element method // International Journal for Numerical Methods in Engineering. 2007. Vol. 71. 1365-1386. 17. Gheisari M., Molatefi H., Ahmadi S.S Third order formulation for vibrating non-homogeneous cylindrical shells in elastic medium // journal of Solid Mechanics. 2011. Vol. 3, no. 4. P. 346-352. 18. Sheng G.C., Wang X., Fu G., Hu H. The nonlinear vibrations of functionally graded cylindrical shells surrounded by an elastic foundation // Nonlinear Dynamics. 2014. Vol. 78 (2). 1421-1434. 19. URL https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_thry/ansys.theory.html.