Инд. авторы: | Литасов К.Д., Бадюков Д.Д. |
Заглавие: | Рамановская спектроскопия фаз высокого давления в ударно-метаморфизованном l6 хондрите nwa 5011 |
Библ. ссылка: | Литасов К.Д., Бадюков Д.Д. Рамановская спектроскопия фаз высокого давления в ударно-метаморфизованном l6 хондрите nwa 5011 // Геохимия. - 2019. - Т.64. - № 8. - С.848-858. - ISSN 0016-7525. |
Внешние системы: | РИНЦ: 39257105; |
Реферат: | eng: In the paper we present results of studies of thick shock melt veins in NWA 5011 L6 chondrite. The veins contain a wide variety of high-pressure phases that correspond to contrast values of pressure-temperature parameters on equilibrium phase diagrams. Olivine was transformed to ringwoodite and wadsleyte, orthopyroxene to majorite, akimotoite, and bridgmanite glass, maskelenite is converted to jadeite (+SiO2) and lingunite, apatite to tuite, and chromite to the phase with the calcium ferrite (mCF-FeCr2O4) structure. ) The peak PT shock parameters for NWA 5011 seem highest among the ones for other shocked chondrites according to wide occurrence of lingunite and bridgmanite glass and are considerable higher than 25 GPa and 2500 K. Akimotoite crystals in a quenched matrix of shock melt veins were found for the first time. Probably, they initially crystallized as bridgmanite, since akimotoite is not a liquidus phase in related systems. Plagioclase-chromite aggregates have been established, which characterize the late stages of the shock process and are formed during successive crystallization from isolated pockets of the impact melt. rus: В работе приводятся результаты исследования крупных ударно-расплавных жил в L6 хондрите NWA 5011. В них установлено широкое разнообразие высокобарических фаз, которые отвечают контрастным значениям РТ-параметров на равновесных фазовых диаграммах. По оливину образуются рингвудит и вадслеит, по ортопироксену - мэйджорит, акимотоит и бриджманитовое стекло, по маскелиниту - жадеит (+SiO2) и лингунит, по апатиту - туит, по хромиту - фаза со структурой феррита кальция (mCF-FeCr2O4). Пиковые параметры для хондрита NWA 5011 являются одними из самых высоких среди ранее исследованных хондритов судя по широкому развитию лингунита и бриджманитового стекла и составляют существенно выше 25 ГПа и 2500 К. Впервые описаны кристаллы акимотоита в закаленной матрице ударно-расплавных жил. Вероятно, они первоначально кристаллизовались в виде бриджманита, так как акимотоит не является ликвидусной фазой в родственных системах. Установлены плагиоклаз-хромитовые агрегаты, которые характеризуют поздние стадии ударного процесса и образуются при последовательной кристаллизации из изолированных порций ударного расплава. |
Ключевые слова: | хондрит; рингвудит; мэйджорит; акимотоит; бриджманит; ударный метаморфизм; meteorite; chondrite; ringwoodite; majorite; Akimotoite; bridgmanite; shock metamorphism; метеорит; |
Издано: | 2019 |
Физ. характеристика: | с.848-858 |
Цитирование: | 1. Литасов К.Д., Бадюков Д.Д., Похиленко Н.П. (2019) Параметры образования минералов высокого давления в хондритовых метеоритах Dhofar 717 и 864. ДАН, 485(3), 346-350. 2. Akaogi M., Ito E., Navrotsky A. (1989) Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res. 94(B11), 15671-15685. 3. Baziotis I.P., Liu Y., DeCarli P.S., Melosh H.J., McSween Jr. H.Y., Bodnar R.J., Taylor L.A. (2013) The Tissint Martian meteorite as evidence for the largest impact excavation. Nature Comm. 4, 1404. 4. Bell P.M., Roseboom Jr. E.H. (1969) Melting relationships of jadeite and albite to 45 kilobars with comments on melting diagrams of binary systems at high pressures. Min. Soc. Amer. Spec. Paper 2, 151-169. 5. Bindi L., Tamarova A., Bobrov A.V., Sirotkina E.A., Tschauner O., Walter M.J., Irifune T. (2017) Incorporation of high amounts of Na in ringwoodite: possible implications for transport of alkali into lower mantle. Amer. Mineral. 101(2), 483-486. 6. Chen M., Shu J., Mao H.-K. (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Sci. Bull. 53(21), 3341-3345. 7. Chen M., Shu J.F., Mao H.K., Xie X.D., Hemley R.J. (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc. Nat. Acad. Sci. 100(25), 14651-14654. 8. Feng L., Miyahara M., Nagase T., Ohtani E., Hu S., El Goresy A., Lin Y. (2017) Shock-induced P-T conditions and formation mechanism of akimotoite-pyroxene glass assemblages in the Grove Mountains (GRV) 052082 (L6) meteorite. Amer. Mineral. 102(6), 1254-1262. 9. Fritz J., Greshake A. (2009) High-pressure phases in an ultramafic rock from Mars. Earth Planet. Sci. Lett. 288(3-4), 619-623. 10. Gasparik T. (2003) Phase diagrams for geoscientists. An atlas of the Earth’s interior. Springer. 459 p. 11. Gillet P., El Goresy A. (2013) Shock events in the Solar System: The message from minerals in terrestrial planets and asteroids. Ann. Rev. Earth Planet. Sci. 41, 257-285. 12. Herzberg C., Zhang J. (1996) Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone. J. Geophys. Res.: Solid Earth 101(B4), 8271-8295. 13. Holtstam D., Broman C., Soderhielm J., Zetterqvist A. (2003) First discovery of stishovite in an iron meteorite. Met. Planet. Sci. 38(11), 1579-1583. 14. Ishii T., Kojitani H., Tsukamoto S., Fujino K., Mori D., Inaguma Y., Tsujino N., Yoshino T., Yamazaki D., Higo Y., Funakoshi K., Akaogi M. (2014) High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Amer. Mineral. 99(8-9), 1788-1797. 15. Konzett J., Rhede D., Frost D.J. (2012) The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle. Contrib. Mineral. Petrol. 163(2), 277-296. 16. Litasov K., Ohtani E., Langenhorst F., Yurimoto H., Kubo T., Kondo T. (2003) Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth Planet. Sci. Lett., 211(1-2), 189-203. 17. Litasov K.D., Podgornykh N.M. (2017) Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectr. 48(11), 1518-1527. 18. Liu X. (2006) Phase relations in the system KAlSi3O8-NaAlSi3O8 at high pressure-high temperature conditions and their implication for the petrogenesis of lingunite. Earth Planet. Sci. Lett. 246(3-4), 317-325. 19. Miyahara M., Kaneko S., Ohtani E., Sakai T., Nagase T., Kayama M., Nishido H., Hirao N. (2013) Discovery of seifertite in a shocked lunar meteorite. Nature Comm. 4, 1737. 20. Murayama J.K., Nakai S., Kato M., Kumazawa M. (1986) A dense polymorph of Ca3(PO4)2 - a high-pressure phase of apatite decomposition and its geochemical significance. Phys. Earth Planet. Inter. 44(4), 293-303. 21. Nagy S., Józsa S., Gyollai I., Bérczi S., Bendő Z., Stehlik H. (2011) Ringwoodite microstructures in L-chondrite NWA 5011: implications for transformation mechanism and source region in L parent body. Central Eur. Geol. 54(3), 233-248. 22. Ohtani E., Kimura Y., Kimura M., Kubo T., Takata T. (2006) High-pressure minerals in shocked L6-chondrites: constraints on impact conditions. Shock Waves 16(1), 45-52. 23. Ohtani E., Kimura Y., Kimura M., Takata T., Kondo T., Kubo T. (2004) Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth Planet. Sci. Lett. 227(3-4), 505-515. 24. Rout S.S., Heck P.R., Zaluzec N.J., Ishii T., Wen J., Miller D.J., Schmitz B. (2017) Shocked chromites in fossil L chondrites: A Raman spectroscopy and transmission electron microscopy study. Met. Planet. Sci. 52(9), 1776-1796. 25. Rubin A.E. (2003) Chromite-plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites. Geochim. Cosmochim. Acta, 67(14), 2695-2709. 26. Sharp T.G., DeCarli P.S. (2006) Shock effects in meteorites. In Meteorites and the Early Solar System II (Eds. Lauretta D.S., McSween Jr. H.Y.). Tucson: University of Arisona Press, 653-677. 27. Sirotkina E.A., Bindi L., Bobrov A.V., Tamarova A.P., Pushcharovsky D.Yu., Irifune T. (2018) X-ray single-crystal structural characterization of Na2MgSiO4 with cristobalite-type structure synthesised at 22 GPa and 1800 °C. Eur. J. Mineral., 30(3), 485-489. 28. Stoffler D., Keil K., Scott E.R.D. (1991) Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55(12), 3845-3867. 29. Tomioka N., Kimura M. (2003) The breakdown of diopside to Ca-rich majorite and glass in a shocked H chondrite. Earth Planet. Sci. Lett. 208(3-4), 271-278. 30. Tomioka N., Miyahara M. (2017) High-pressure minerals in shocked meteorites. Met. Planet. Sci., 52(9), 2017-2039. 31. Tschauner O., Ma C., Beckett J.R., Prescher C., Prakapenka V.B., Rossman G.R. (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346, 1100-1102. 32. Xie X., Chen M., Wang C. (2011) Occurrence and mineral chemistry of chromite and xieite in the Suizhou L6 chondrite. Sci. China Earth Sci. 54(7), 998-1010. 33. Zhang J., Li B., Utsumi W., Liebermann R.C. (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys. Chem. Miner.23(1), 1-10. 34. Zhang Y., Jin Z., Griffin W.L., Wang C., Wu Y. (2017) High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites. Earth Planet. Sci. Lett. 463, 151-158. 35. Zhou Y., Irifune T., Ohfuji H., Shinmei T., Du W. (2017) Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K. Phys. Chem. Miner. 44(1), 33-42. |