Инд. авторы: Зедгенизов Д.А., Рагозин А.Л., Каги Х., Юримото Х., Шацкий В.С.
Заглавие: Включения sio2 в сублитосферных алмазах
Библ. ссылка: Зедгенизов Д.А., Рагозин А.Л., Каги Х., Юримото Х., Шацкий В.С. Включения sio2 в сублитосферных алмазах // Геохимия. - 2019. - Т.64. - № 9. - С.948-957. - ISSN 0016-7525.
Внешние системы: РИНЦ: 39554729;
Реферат: eng: The specific features of the mineralogy of SiO2 inclusions in sublithospheric diamonds are described in this study. Such diamonds are characterized by a complex growth history with stages of growth and dissolution and postgrowth processes of deformation and crushing. The nitrogen content in all studied crystals does not exceed 71 ppm and nitrogen is detected only as B-defects. The carbon isotope composition of diamonds varies widely from -26.5 to -6.7 ‰ of δ13С. SiO2 inclusions associate with omphacitic clinopyroxenes, majoritic garnets, CaSiO3, jeffbenite and ferropericlase. All SiO2 inclusions are coesite, which is often accompanied by micro-blocks of kyanite. These phases are suggested to represent the product of the retrograde transformation of the primary Al-stishovite. Significant internal stresses in the inclusions and deformations around them can be evidence of thise phase transformation. The heavier oxygen isotope composition of SiO2 inclusions in sublithospheric diamonds (up to 12.9 δ18O) indicates the crustal origin of their protoliths. The observed anti-correlation of δ18O of SiO2 inclusions and δ13C of their host diamonds reflects the processes of interaction of slab-derived melts with reduced mantle rocks at depths above 270 km.
rus: В работе проанализированы особенности минералогии включений SiO2 в сублитосферных алмазах. Такие алмазы характеризуются сложной историей роста с чередующимися этапами роста и растворения и наложенными процессами деформации и дробления. Содержание азота во всех изученных кристаллах не превышает 71 ppm и фиксируется только в форме В-дефектов. Изотопный состав углерода алмазов варьирует в широких пределах - от -26.5 до -6.7‰ δ13С. Включения SiO2 ассоциируют с омфацитовым клинопироксеном, мэйджоритовым гранатом, фазой CaSiO3, джеффбенитом и ферропериклазом. Все включения SiO2 представлены коэситом, который часто сопровождается микровыделениями кианита. Предполагается, что эти фазы являются продуктами ретроградного преобразования изначально захваченного Al-стишовита. Значительные внутренние напряжения во включениях и деформации вокруг них могут быть свидетельством таких преобразований. Изотопный состав кислорода включений SiO2 в сверхглубинных алмазах (до 12.9‰ δ18O) указывает на коровое происхождение их протолитов. Отмеченная зависимость δ18O включений SiO2 и δ13C содержащих их алмазов отражает процессы взаимодействия расплавов субдукционного происхождения с восстановленными породами мантии на глубинах более 270 км.
Ключевые слова: включения; стишовит; oxygen; carbon; subduction; sublithospheric mantle; Coesite; Stishovite; inclusions; diamonds; кислород; углерод; субдукция; сублитосферная мантия; коэсит; алмаз;
Издано: 2019
Физ. характеристика: с.948-957
Цитирование: 1. Зедгенизов Д., Рагозин А., Калинина В., Каги Х. (2016) Особенности минералогии кальциевых включений в сублитосферных алмазах. Геохимия (10), 919-930. 2. Zedgenizov D.A., Ragozin A.L., Kalinina V.V., H. Kagi (2016) The Mineralogy of ca-rich inclusions in sublithospheric diamonds. Geochem. Int. 54 (10), 890-900. 3. Зедгенизов Д., Шацкий В., Панин А., Евтушенко О., Рагозин А., Каги Х. (2015) Свидетельства фазовых переходов минеральных включений в сверхглубинных алмазах из месторождения Сао-Луис (Бразилия). Геология и геофизика 56, 384-396. 4. Литвин Ю.А., Спивак А.В., Кузюра А.В. (2016) Основы мантийно-карбонатитовой концепции генезиса алмаза. Геохимия (10), 873-892. 5. Litvin Yu.A., Spivak A.V., Kuzyura A.V. (2016). Fundamentals of the mantle carbonatite concept of diamond genesis. Geochem. Int. 54 (10), 839-857. 6. Литвин Ю.А., Спивак А.В., Дубровинский Л.С., Симонова Д.А. (2017) Стишовитовый парадокс в эволюции нижнемантийных магм и алмазообразующих расплавов (эксперимент при 24 и 26 ГПа). ДАН 473 (5), 596-599. 7. Рябчиков И.Д., Когарко Л.Н. (2016) Глубокая дифференциация щелочно-ультраосновных магм: формирование карбонатитовых расплавов. Геохимия (9), 771-779. 8. Соболев Н.В. (2006) Коэсит как индикатор сверхвысоких давлений в континентальной литосфере. Геология и геофизика 47 (1), 95-104. 9. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974, 264 с. 10. Тэйлоp Л.А., Cпециуc З.В., Уизли P., Cпикуцца М., Вэлли Д.У. (2005) Океаничеcкие пpотолиты алмазоноcныx пеpидотитов: cвидетельcтво иx коpового пpоиcxождения на пpимеpе Якутcкиx кимбеpлитов. Геология и геофизика 46 (12), 1198-1206. 11. Шацкий В.С., Зедгенизов Д.А., Рагозин А.Л. (2016) Свидетельства присутствия субдукционного компонента в алмазоносной мантии сибирского кратона. Геология и геофизика 57 (1), 143-162. 12. Araujo D.P., Gaspar J.C., Bulanova G.P., Smith C.B., Kohn S.C., Walter M.J., Hauri E.H. (2013) Juina diamonds from kimberlites and alluvials: a comparison of morphology, spectral characteristics and carbon isotope composition. Proceed. X Intern. Kimberlite Conf. Springer, India, 255-269. 13. Brenker F.E., Vollmer C., Vincze L., Vekemans B., Szymanski A., Janssens K., Szaloki I., Nasdala L., Joswig W., Kaminsky F. (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 260, 1-9. 14. Brey G.P., Bulatov V., Girnis A., Harris J.W., Stachel T. (2004) Ferropericlase - a lower mantle phase in the upper mantle. Lithos 77, 655-663. 15. Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Mineral. Petrol. 160, 489-510. 16. Burnham A., Thomson A., Bulanova G., Kohn S., Smith C., Walter M. (2015) Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet. Sci. Lett. 432, 374-380. 17. Cartigny P., Harris J.W., Javoy M. (2001) Diamond genesis, mantle fractionations and mantle nitrogen content: a study of delta C-13-N concentrations in diamonds. Earth Planet. Sci. Lett. 185, 85-98. 18. Davies R.M., Griffin W.L., O’Reilly S.Y., Doyle B.J. (2004) Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77, 39-55. 19. Fukao Y., Widiyantoro S., Obayashi M. (2001) Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys. 39, 291-323. 20. Harris J.W. (1992) Diamond geology. In: The properties of natural and synthetic diamond, ed. J.E. Field, Academic Press, London, 345-393. 21. Harte B. (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 74, 189-215. 22. Harte B., Harris J., Hutchison M., Watt G., Wilding M. (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In Mantle petrology: Field observations and high-pressure experimentation: A tribute to Francis R. (Joe) Boyd 6, 125-153. 23. Hayman P.C., Kopylova M.G., Kaminsky F.V. (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib. Mineral. Petrol. 149, 430-445. 24. Helffrich G., Ballmer M., Hirose K. (2018) Core-exsolved SiO2 dispersal in the Earth’s mantle. J. Geophys. Res. Solid Earth 123 (1), 176-188. 25. Hemley R.J. (1987) Pressure dependence of Raman spectra of SiO2 polymorphs: quartz, coesite, and stishovite. In: Manghnani, M.H., Syono, Y. (Eds.), High-Pressure Research in Mineral Physics. Terra Scientific Publishing Co., Tokyo, 347-359. 26. Hirose K., Morard G., Sinmyo R., Umemoto K., Hernlund J., Helffrich G., Labrosse S. (2017) Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543, 99-102. 27. Hutchison M., Cartigny P., Harris J. (1999) Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from Sao Luiz, Brazil. Proceed. VII Intern. Kimberlite Conf., vol.1, Red Roof Design, Cape Town, South Africa, 372-382. 28. Hutchison M., Hursthouse M., Light M. (2001) Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contrib. Mineral. Petrol. 142, 119-126. 29. Ickert R.B., Stachel T., Stern R.A., Harris J.W. (2013) Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions. Earth Planet. Sci. Lett. 364, 85-97. 30. Irifune T., Ringwood A.E. (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle. Earth Planet. Sci. Lett. 117, 101-110. 31. Irifune T., Ringwood A.E., Hibberson W.O. (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet. Sci. Lett. 126, 351-368. 32. Jacob D. (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77, 295-316. 33. Kaminsky F.V., Zakharchenko O.D., Davies R., Griffin W.L., Khachatryan-Blinova G.K., Shiryaev A.A. (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Mineral. Petrol. 140, 734-753. 34. Kaminsky F., Wirth R., Matsyuk S., Schreiber A., Thomas R. (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral. Mag. 73, 797-816. 35. Kaminsky F. (2012) Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth Sci. Rev. 110, 127-147. 36. Kaminsky F.V., Ryabchikov I.D., Wirth R. (2016) A primary natrocarbonatitic association in the deep. Earth. Mineral. Petrol. 110 (2-3), 387-398. 37. Kaminsky F.V. (2017) The Earth’s lower mantle: composition and structure. Springer Geology, 331 p. 38. Kirkley M.B., Gurney J.J., Otter M.L., Hill S.J., Daniels L.R. (1991) The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl. Geochem. 6, 477-494. 39. Litasov K.D., Kagi H., Shatskiy A., Ohtani E., Lakshtanov D.L., Bass J.D., Ito E. (2007) High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth Planet. Sci. Lett. 262, 620-634. 40. Mattey D., Lowry D., Macpherson C. (1994) Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 128, 231-241. 41. Meyer H.O.A. (1987) Inclusions in diamond. In: Nixon, P.H. (Ed.), Mantle xenoliths. Wiley, Chichester, 501-522. 42. Pawley A.R., Mcmillan P.F., Holloway J.R. (1993) Hydrogen in stishovite, with implications for mantle water-content. Science 261, 1024-1026. 43. Schulze D.J., Harte B., EIMF staff, Page F.Z., Valley J.W., Channer D.M.D.R., Jaques A.L. (2013) Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology 41, 455-458. 44. Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V. (2015) Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res. 28, 106-120. 45. Shilobreeva S., Martinez I., Busigny V., Agrinier P., Laverne C. (2011) Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237-2255. 46. Stachel T., Brey G.P., Harris J.W. (2005) Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements 1(2), 73-78. 47. Stachel T., Harris J.W., Brey G.P., Joswig W. (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib. Mineral. Petrol. 140, 16-27. 48. Thomson A., Kohn S., Bulanova G., Smith C., Araujo D., Walter M. (2014) Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contrib. Mineral. Petrol. 168, 1081. 49. Thomson A.R., Walter M.J., Kohn S.C., Brooker R.A. (2016) Slab melting as a barrier to deep carbon subduction. Nature 529, 76-79. 50. Walter M.J., Bulanova G.P., Armstrong L.S., Keshav S., Blundy J.D., Gudfinnsson G., Lord O.T., Lennie A.R., Clark S.M., Smith C.B., Gobbo L. (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature 454, 622-630. 51. Walter M., Kohn S., Araujo D., Bulanova G., Smith C., Gaillou E., Wang J., Steele A., Shirey S. (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334, 54-57. 52. Zaitsev A.M. (2001) Optical properties of diamond: a data handbook. Berlin: Springer Verlag, 502 p. 53. Zedgenizov D., Rubatto D., Shatsky V., Ragozin A., Kalinina V. (2016) Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian craton: Trace elements and coupled δ13C-δ18O signatures in diamonds and garnet inclusions. Chem. Geol. 422, 46-59. 54. Zedgenizov D.A., Kagi H., Shatsky V.S., Ragozin A.L. (2014) Local variations of carbon isotope composition in diamonds from São Luiz (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem. Geol. 363, 114-124. 55. Zhang J., Liebermann R.C., Gasparik T., Herzberg C.T. (1993) Melting and subsolidus relations of SiO2 at 9-14 GPa. J. Geophys. Res. 98, 19785-19793.