Инд. авторы: Sokol I.A, Sokol A., Bul'bak T.A., Nefeyodov A., Zaikin P., Tomilenko A.
Заглавие: C- and n-bearing species in reduced fluids in the simplified c-o-h-n system and in natural pelite at upper mantle p-t conditions
Библ. ссылка: Sokol I.A, Sokol A., Bul'bak T.A., Nefeyodov A., Zaikin P., Tomilenko A. C- and n-bearing species in reduced fluids in the simplified c-o-h-n system and in natural pelite at upper mantle p-t conditions // Minerals. - 2019. - Vol.9. - Iss. 11. - Art.712. - EISSN 2075-163X.
Внешние системы: DOI: 10.3390/min9110712; РИНЦ: 41409386; WoS: 000502267100065;
Реферат: eng: C- and N-bearing species in reduced fluids weree studied experimentally in C-O-H-N and muscovite-C-O-H-N systems and in natural carbonate-bearing samples at mantle P-T parameters. The experiments reproduced three types of reactions leading to formation of hydrocarbons (HCs) at 3.8-7.8 GPa and 800-1400 degrees C and at hydrogen fugacity (fH(2)) buffered by the Fe-FeO (IW) + H2O or Mo-MoO2 (MMO) + H2O equilibria: (i) Thermal destruction of organic matter during its subduction into the mantle (with an example of docosane), (ii) hydrogenation of graphite upon interaction with H-2-enriched fluids, and (iii) hydrogenation of carbonates and products of their reduction in metamorphic clayey rocks. The obtained quenched fluids analyzed after the runs by gas chromatography-mass spectrometry (GC-MS) and electronic ionization mass-spectrometry (HR-MS) contain CH4 and C2H6 as main carbon species. The concentrations of C-2-C-4 alkanes in the fluids increase as the pressure and temperature increase from 3.8 to 7.8 GPa and from 800 to 1400 degrees C, respectively. The fluid equilibrated with the muscovite-garnet-omphacite-kyanite-rutile +/- coesite assemblage consists of 50-80 rel.% H2O and 15-40 rel.% alkanes (C-1 > C-2 > C-3 > C-4). Main N-bearing species are ammonia (NH3) in the C-O-H-N and muscovite-C-O-H-N systems or methanimine (CH3N) in the fluid derived from the samples of natural pelitic rocks. Nitrogen comes either from air or melamine (C3H6N6) in model systems or from NH4+ in the runs with natural samples. The formula CH3N in the quenched fluid of the C-O-H-N system is confirmed by HR-MS. The impossibility of CH3N incorporation into K-bearing silicates because of a big CH3NH+ cation may limit the solubility of N in silicates at low fO(2) and hence may substantially influence the mantle cycle of nitrogen. Thus, subduction of slabs containing carbonates, organic matter, and N-bearing minerals into strongly reduced mantle may induce the formation of fluids enriched in H2O, light alkanes, NH3, and CH3N. The presence of these species must be critical for the deep cycles of carbon, nitrogen, and hydrogen.
Ключевые слова: CARBON; 5.5-7.8 GPA; HIGH-PRESSURES; OXIDATION-STATE; SUBDUCTION ZONES; NITROGEN SPECIATION; EARTHS MANTLE; DIAMOND CRYSTAL-GROWTH; deep nitrogen cycle; deep carbon cycle; methanimine; hydrocarbons; fluid; pelite; subduction; mantle; HYDROCARBONS; HYDROGENATION;
Издано: 2019
Физ. характеристика: 712
Цитирование: 1. Etiope, G.; Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 2013, 51, 276-299. 2. Palyanov, Y.N.; Bataleva, Y.V.; Sokol, A.G.; Borzdov, Y.M.; Kupriyanov, I.N.; Reutsky, V.N.; Sobolev, N.V. Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 2013, 110, 20408-20413. 3. Luth, R.W. Volatiles in Earth's mantle. In Treatise on Geochemistry, 2nd ed.; Elsevier: Oxford, UK, 2014; Volume 3, pp. 355-391. 4. Sverjensky, D.A.; Stagno, V.; Huang, F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci. 2014, 7, 909. 5. Smith, E.M.; Shirey, S.B.; Nestola, F.; Bullock, E.S.; Wang, J.; Richardson, S.H.; Wang, W. Large gem diamonds from metallic liquid in Earth's deep mantle. Science 2016, 354, 1403-1405. 6. Bebout, G.E.; Lazzeri, K.E.; Geiger, C.A. Pathways for nitrogen cycling in Earth's crust and upper mantle: A review and new results for microporous beryl and cordierite. Am. Mineral. 2016, 101, 7-24. 7. Kolesnikov, A.Y.; Saul, J.M.; Kutcherov, V.G. Chemistry of hydrocarbons under extreme thermobaric conditions. ChemistrySelect 2017, 2, 1336-1352. 8. Matveev, S.; Ballhaus, C.; Fricke, K.; Truckenbrodt, J.; Ziegenben, D. Volatiles in the Earth's mantle: I. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim. Cosmochim. Acta 1997, 61, 3081-3088. 9. Sokol, A.G.; Palyanova, G.A.; Palyanov, Y.N.; Tomilenko, A.A.; Melenevsky, V.N. Fluid regime and diamond formation in the reduced mantle: Experimental constraints. Geochim. Cosmochim. Acta 2009, 73, 5820-5834. 10. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Palyanova, G.A.; Sokol, I.A.; Palyanov, Y.N. Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °C. Sci. Rep. 2017, 7, 706. 11. Matjuschkin, V.; Woodland, A.B.; Yaxley, G.M. Methane-bearing fluids in the upper mantle: An experimental approach. Contrib. Mineral. Petrol. 2019, 174, 1. 12. Kenney, J.F.; Kutcherov, V.A.; Bendeliani, N.A.; Alekseev, V.A. The evolution of multicomponent systems at high pressures: The thermodynamic stability of the hydrogen-carbon system: The genesis of hydrocarbons and the origin of petroleum. Proc. Nat. Acad. Sci. USA 2002, 99, 10976-10981. 13. Scott, H.P.; Hemley, R.J.; Mao, H.; Herschbach, D.R.; Fried, L.E.; Howard, W.M.; Bastea, S. Generation of methane in the Earth's mantle: In situ high pressure-temperature measurements of carbonate reduction. Proc. Nat. Acad. Sci. USA 2004, 101, 14023-14026. 14. Kutcherov, V.G.; Kolesnikov, A.Y.; Dyuzheva, T.I.; Kulikova, L.F.; Nikolaev, N.N.; Sazanova, O.A.; Braghkin, V.V. Synthesis of Complex Hydrocarbon Systems at Temperatures and Pressures Corresponding to the Earth's Upper Mantle Conditions. Dokl. Phys. Chem. 2010, 433, 132-135. 15. Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khokhryakov, A.F. Effect of H2O on diamond crystal growth in metal-carbon systems. Cryst. Growth Des. 2010, 12, 5571-5578. 16. Mukhina, E.; Kolesnikov, A.; Kutcherov, V. The lower pT limit of deep hydrocarbon synthesis by CaCO3 aqueous reduction. Sci. Rep. 2017, 7, 5749. 17. Tao, R.; Zhang, L.; Tian, M.; Zhu, J.; Liu, X.; Liu, J.; Höfer, H.E.; Stagno, V.; Fei, Y. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochim. Cosmochim. Acta 2018, 239, 390-408. 18. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Sokol, I.A.; Persikov, E.S.; Bukhtiyarov, P.G.; Palyanov, Y.N. Distribution of light alkanes in the reaction of graphite hydrogenation at pressure of 0.1-7.8 GPa and temperatures of 1000-1350 °C. High Press. Res. 2018, 38, 468-481. 19. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Sokol, I.A.; Zaikin, P.A.; Palyanova, G.A.; Palyanov, Y.N. Hydrogenation of carbon at 5.5-7.8 GPa and 1100-1400 °C: Implications to formation of hydrocarbons in reduced mantles of terrestrial planets. Phys. Earth Planet. Inter. 2019, 291, 12-23. 20. Sokol, A.; Tomilenko, A.; Sokol, I.; Zaikin, P.; Bul'bak, T. Formation of Hydrocarbons in the Presence of Native Iron at Upper Mantle Conditions: Experimental Constraints. Minerals 2019, in press. 21. Mikhail, S.; Sverjensky, D.A. Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere. Nat. Geosci. 2014, 7, 816-819. 22. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Kruk, A.N.; Sokol, I.A.; Palyanov, Y.N. Fate of fluids at the base of subcratonic lithosphere: Experimental constraints at 5.5-7.8 GPa and 1150-1350 deg C. Lithos 2018, 318, 419-433. 23. Chukanov, N.V.; Pekov, I.V.; Sokolov, S.V.; Nekrasov, A.N.; Chukanova, V.N.; Naumova, I.S. On the problem of the formation and geochemical role of bituminous matter in pegmatites of the Khibiny and Lovozero alkaline massifs, Kola Peninsula, Russia. Geochem. Int. 2006, 44, 715-728. 24. Smith, E.M.; Shirey, S.B.; Richardson, S.H.; Nestola, F.; Bullock, E.S.; Wang, J.; Wang, W. Blue boron-bearing diamonds from Earth's lower mantle. Nature 2018, 560, 84. 25. Sobolev, N.V.; Sobolev, A.V.; Tomilenko, A.A.; Kuz'min, D.V.; Grakhanov, S.A.; Batanova, V.G.; Logvinova, A.M.; Bul'bak, T.A.; Kostrovitskii, S.I.; Yakovlev, D.A.; et al. Prospects of search for diamondiferous kimberlites in the northeastern Siberian. Platform. Russ. Geol. Geophys. 2018, 59, 1365-1379. 26. Sobolev, N.V.; Tomilenko, A.A.; Bul'bak, T.A.; Logvinova, A.M. Composition of volatile components in the diamonds, associated garnet and olivine from diamondiferous peridotites from the Udachnaya pipe, Yakutia, Russia (by coupled gas chromatographic-mass spectrometric analysis). Engineering 2019, 5, 471-478. 27. Sobolev, N.V.; Logvinova, A.M.; Tomilenko, A.A.; Wirth, R.; Bul'bak, T.A.; Luk'yanova, L.I.; Fedorova, E.N.; Reutsky, V.N.; Efimova, E.S. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochim. Cosmochim. Acta 2019, 266, 197-219. 28. Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325-394. 29. Schmidt, M.; Poli, S. Devolatilization during subduction. In Treatise on Geochemistry, 2nd ed.; Elsevier: Oxford, UK, 2014; pp. 669-701. 30. Watenphul, A.; Wunder, B.; Heinrich, W. High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth's mantle. Am. Mineral. 2009, 94, 283-292. 31. Watenphul, A.; Wunder, B.; Wirth, R.; Heinrich, W. Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle. Chem. Geol. 2010, 270, 240-248. 32. Domanik, K.J.; Holloway, J.R. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochim. Cosmochim. Acta 1996, 60, 4133-4150. 33. Schmidt, M.W.; Vielzeuf, D.; Auzanneau, E. Melting and dissolution of subducting crust at high pressurfufes: The key role of white mica. Earth Planet. Sci. Lett. 2004, 228, 65-84. 34. Busigny, V.; Cartigny, P.; Philippot, P.; Ader, M.; Javoy, M. Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: Evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe). Earth Planet. Sci. Lett. 2003, 215, 27-42. 35. Cartigny, P.; Harris, J.W.; Javoy, M. Diamond genesis, mantle fractionations and mantle nitrogen content: A study of δ13C-N concentrations in diamonds. Earth Planet. Sci. Lett. 2001, 185, 85-98. 36. Li, Y.; Keppler, H. Nitrogen speciation in mantle and crustal fluids. Geochim. Cosmochim. Acta 2014, 129, 13-32. 37. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Kruk, A.N.; Zaikin, P.A.; Sokol, I.A.; Seryotkin, Y.V.; Palyanov, Y.N. The Fe-C-O-H-N system at 6.3-7.8 GPa and 1200-1400 °C: Implications for deep carbon and nitrogen cycles. Contrib. Mineral. Petrol. 2018, 173, 47. 38. Sokol, A.G.; Palyanov, Y.N.; Tomilenko, A.A.; Bul'bak, T.A.; Palyanova, G.A. Carbon and nitrogen speciation in nitrogen-rich C-O-H-N fluids at 5.5-7.8 GPa. Earth Planet. Sci. Lett. 2017, 460, 234-243. 39. Sokol, E.; Kokh, S.; Kozmenko, O.; Novikova, S.; Khvorov, P.; Nigmatulina, E.; Belogub, E.; Kirillov, M. Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea). Minerals 2018, 8, 344. 40. Karpenko, V.Y.; Pautov, L.A.; Agakhanov, A.A.; Khvorov, P.V. On Nitrogen Content in the Schist of the Mun'-Khambo Ridge (N. Ural); The Ural Mineralogical Collected Papers #11. Scientific Edition; Institute of Mineralogy, Ural Branch of Russian Academy of Sciences: Miass, Russia, 2001; p. 330. 41. Li, L.; Bebout, G.E. Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J. Geophys. Res. Solid Earth 2005, 110, B11202. 42. Busigny, V.; Cartigny, P.; Philippot, P. Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochim. Cosmochim. Acta 2011, 75, 7502-7521. 43. Bebout, G.E.; Agard, P.; Kobayashi, K.; Moriguti, T.; Nakamura, E. Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chem. Geol. 2013, 342, 1-20. 44. Busigny, V.; Bebout, G.E. Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral-fluid interactions. Elements 2013, 9, 353-358. 45. Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N.; Sokol, A.G. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10, 3169-3175. 46. Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High-temperature calibration of a multi-anvil high-pressure apparatus. High Press. Res. 2015, 35, 139-147. 47. Luth, R.W. Natural versus experimental control of oxidation state: Effects on the composition and speciation of C-O-H fluids. Am. Mineral. 1989, 74, 50-57. 48. Dementyev, S.N.; Drebushchak, V.A. Zeolites' dehydration under dynamic regime. Geochem. Int. 1992, 9, 1361-1367. 49. Theule, P.; Borget, F.; Mispelaer, F.; Danger, G.; Duvernay, F.; Guillemin, J.C.; Chiavassa, T. Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astron. Astrophys. 2011, 534, A64. 50. Foley, S. A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 2011, 52, 1363-1391. 51. Stagno, V.; Ojwang, D.O.; McCammon, C.A.; Frost, D.J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013, 493, 84. 52. Robertson, A.J.B. The Pyrolysis of Methane, Ethane and n-butane on a Platinum Filament. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1949, 199, 394. 53. Belgued, M.; Amariglio, A.; Paréja, P.; Amariglio, H. Oxygen-Free conversion of methane to higher alkanes through an isothermal two-step reaction on platinum (EUROPT-1): II. hydrogenation of the adspecies resulting from the chemisorption of methane. J. Catal. 1996, 159, 449-457. 54. Hammer, B.; Nørskov, J. Why gold is the noblest of all the metals. Nature 1995, 376, 238. 55. McEwan, L.; Julius, M.; Roberts, S.; Fletcher, J.C.Q. A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bull. 2010, 43, 298. 56. Mowbray, D.J.; Migani, A.; Walther, G.; Cardamone, D.M.; Rubio, A. Gold and methane: A noble combination for delicate oxidation. J. Phys. Chem. Lett. 2013, 4, 3006-3012. 57. Sharma, A.; Cody, G.D.; Hemley, R.J. In situ diamond-anvil cell observations of methanogenesis at high pressures and temperatures. Energy Fuels 2009, 23, 5571-5579. 58. Stachel, T.; Luth, R.W. Diamond formation-Where, when and how? Lithos 2015, 220, 200-220.