Инд. авторы: Колпакова А.Ф., Шарипов Р.Н., Волкова О.А., Колпаков Ф.А.
Заглавие: Загрязнение атмосферного воздуха взвешенными веществами как фактор риска рака легких
Библ. ссылка: Колпакова А.Ф., Шарипов Р.Н., Волкова О.А., Колпаков Ф.А. Загрязнение атмосферного воздуха взвешенными веществами как фактор риска рака легких // Пульмонология. - 2019. - Т.29. - № 4. - С.477-485. - ISSN 0869-0189.
Внешние системы: DOI: 10.18093/0869-0189-2019-29-4-477-485; РИНЦ: 41194970; SCOPUS: 2-s2.0-85077913418;
Реферат: rus: В статье освещены современные представления о связи загрязнения атмосферного воздуха взвешенными частицами (ВЧ) с заболеваемостью и смертностью от рака легких (РЛ). По результатам эпидемиологических, клинических и экспериментальных исследований подтверждено, что загрязнение воздуха ВЧ, особенно содержащими металлы, является фактором риска РЛ. Повреждение генома эпителиальной клетки и эпигенетические изменения при действии ВЧ являются важным звеном патогенеза РЛ. Систематизированные научные данные в виде формализованных описаний способствуют понятию патогенеза РЛ и могут быть использованы в практической медицине для оценки риска возникновения, ранней диагностики, прогноза и повышения эффективности лечения больных РЛ
eng: Current view on a relationship between particle pollution, morbidity and mortality of lung carcinoma were discussed in the article. Published epidemiological, clinical and laboratory studies suggest particle pollution, especially metal containing particulate matter (PM), to be a risk factor for lung carcinoma occurrence. PM-associated injury of epithelial cell genome and epigenetic lesions are an important part of pathogenesis of lung carcinoma. Systemic research findings and formalized reports could improve our knowledge on lung cancer pathogenesis and could be used in clinical practice for risk assessment, early detection and prognosis of lung cancer and improvement in treatment efficacy.
Ключевые слова: lung carcinoma; pathogenesis; взвешенные частицы; air pollution; рак легких; патогенез; particulate matter; загрязнение воздуха;
Издано: 2019
Физ. характеристика: с.477-485
Цитирование: 1. Каприн А.Д., Старинский В.В., Петрова Г.В., ред. Злокачественные новообразования в России в 2016 году (заболеваемость и смертность). М.: МНИОИ им. П.А.Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2018. Доступно на: http://www.oncology.ru/service/statistics/malignant_tumors/2016.pdf [Дата обращения: 01.03.18]. 2. American Cancer Society. Cancer Facts 3. Outdoor Air Pollution. Volume 109. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France: International Agency for Research on Cancer; World Health Organization; 2016. Available at: http://mono-graphs.iarc.fr/ENG/Monographs/vol109/mono109.pdf [Accessed at: 1 March 2018]. 4. Cohen A.J., Brauer M., Burnett R. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389 (10082): 1907-1918. DOI: 10.1016/S0140-6736(17)30505-6. 5. Jantzen K., Muller P., Karottki D.G. et al. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology. 2016; 359-360: 11-18. DOI: 10.1016/ j.tox.2016.06.007. 6. Traboulsi H., Guerrina N., Iu M., Maysinger D. Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int. J. Mol. Sci. 2017; 18 (2): 243. DOI: 10.3390/ijms18020243. 7. Weichenthal S., Bai L., Hatzopoulou M. et al. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in Toronto, Canada: a cohort study. Environ. Health. 2017; 16 (1): 64. DOI: 10.1186/s12940-017-0276-7. 8. Gharibvand L., Shavlik D., Ghamsary M. et al. The association between ambient fine particulate air pollution and lung cancer incidence: results from the AHSMOG-2 study. Environ. Health Perspect. 2017; 125 (3): 378-384. DOI: 10. 1289/EHP124. 9. Huang F., Pan B., Wu J. et al. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: a meta-analysis. Oncotarget. 2017; 8 (26): 43322-43331. DOI: 10.18632/oncotarget.17313. 10. Sifaki-Pistolla D., Lionis C., Koinis F. et al. Lung cancer and annual mean exposure to outdoor air pollution in Crete, Greece. Eur. J. Cancer Prev. 2017; 26: S208-S214. DOI: 10. 1097/CEJ.0000000000000407. 11. Fu J., Jiang D., Lin G. et al. An ecological analysis of PM2.5 concentrations and lung cancer mortality rates in China. BMJ Open. 2015; 5 (11): e009452. DOI: 10.1136/ bmjopen-2015-009452. 12. Yin P., Brauer M., Cohen A. et al. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environ. Health Perspect. 2017; 125 (11): 117002. DOI: 10. 1289/EHP1673. 13. Казанцева М.В. Заболеваемость и смертность населения Краснодарского края вследствие злокачественных новообразований. Кубанский научный медицинский вестник. 2014; 1 (143): 96-99. 14. Березуцкая Т.В., Котова В.Е., Иванов В.П. и др. Анализ заболеваемости раком легкого в Курской области с 2007 по 2014 г. Auditorium: электронный научный журнал Курского государственного университета. 2015; 4 (08): 34-37. Доступно на: https://cyberleninka.ru/article/n/analiz-zabolevaemosti-rakom-legkogo-v-kurskoy-oblasti-s-2007-po-2014-g.pdf [Дата обращения: 01.03.18]. 15. Давлетнуров Н.Х., Степанов Е.Г., Жеребцов А.С., Пермина Г.Я. Заболеваемость злокачественными новообразованиями как индикатор медико-экологической безопасности территорий (на примере Республики Башкортостан). Медицина труда и экология человека. 2017; 2 (10): 53-64. 16. Tomczak A., Miller A.B., Weichenthal S.A. et al. Longterm exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. Int. J. Cancer. 2016; 139 (9): 1958-1966. DOI: 10.1002/ijc.30255. 17. Raaschou-Nielsen O., Beelen R., Wang M. et al. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 2016; 87: 66-73. DOI: 10.1016/j.envint.2015. 11.007. 18. Рахманин Ю.А., Леванчук А.В. Гигиеническая оценка атмосферного воздуха в районах с различной степенью развития дорожно-автомобильного комплекса. Гигиена и санитария. 2016; 95 (12): 1117-1121. 19. You S., Yao Z., Dai Y., Wang C.H. A comparison of PM exposure related to emission hotspots in a hot and humid urban environment: concentrations, compositions, respiratory deposition, and potential health risks. Sci. Total Environ. 2017; 599-600: 464-473. DOI: 10.1016/j.scitotenv. 2017.04.217. 20. Li K., Liang T., Wang L. Risk assessment of atmospheric heavy metals exposure in Baotou, a typical industrial city in northern China. Environ. Geochem. Health. 2016; 38 (3): 843-853. DOI: 10.1007/s10653-015-9765-1. 21. Binkowski L.J., RogozMski P., Biaszczyk M. et al. Relationship between air pollution and metal levels in cancerous and non-cancerous lung tissues. J. Environ. Sci. Health. 2016; 51 (14): 1303-1308. DOI: 10.1080/10934529. 2016.1215200. 22. Nawrot T.S., Martens D.S., Hara A. et al. Association of total cancer and lung cancer with environmental exposure to cadmium: the meta-analytical evidence. Cancer Causes Control. 2015; 26 (9): 1281-1288. DOI: 10.1007/s10552-015-0621-5. 23. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 86. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. Lyon, France: International Agency for Research on Cancer; World Health Organization; 2006. Available at: https://monographs.iarc.fr/ENG/Monographs/ vol86/mono86.pdf [Accessed: March 1, 2018]. 24. Black M.B., Dodd D.E., McMullen P.D. et al. Using gene expression profiling to evaluate cellular responses in mouse lungs exposed to V2O5 and a group of other mouse lung tumorigens and non-tumorigens. Regul. Toxicol. Pharmacol. 2015; 73 (1): 339-347. DOI: 10.1016/j.yrtph.2015.07.017. 25. Manjanatha M.G., Shelton S.D., Haber L. et al. Evaluation of cII mutations in lung of male Big Blue mice exposed by inhalation to vanadium pentoxide for up to 8 weeks. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015; 789-790: 46 DOI: 10.1016/j.mrgentox.2015.06.014. 26. Li R., Zhou R., Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases (Review). Oncology Lett. 2018; 15 (5): 7506-7514. DOI: 10.3892/ol.2018.8355. 27. Liu C., Guo H., Cheng X. et al. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells. Oncotarget. 2015; 6: 29428-29439. DOI: 10. 18632/oncotarget.5005. 28. Liu X., Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J. Transl. Med. 2017; 15 (1): 207. DOI: 10.1186/s12967-017-1306-5. 29. Ekoue D.N., He C., Diamond A.M., Bonini M.G. Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis. Biochim. Biophys. Acta. Bioenerg. 2017; 1858 (8): 628-632. DOI: 10.1016/j.bbabio. 2017.01.006. 30. Weichenthal S., Crouse D.L., Pinault L. et al. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Res. 2016; 146: 92-99. DOI: 10.1016/j.envres.2015.12.013. 31. Sancini G., Farina F., Battaglia C. et al. Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One. 2014; 9 (10): e109685. DOI: 10.1371/journal.pone.0109685. 32. Zhou Z., Liu Y., Duan F. et al. Transcriptomic analyses of the biological effects of airborne PM2.5 exposure on human bronchial epithelial cells. PLoS One. 2015; 10 (9): e0138267. DOI: 10.1371/journal.pone.0138267. 33. Wan R., Mo Y., Zhang Z. et al. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part. Fibre Toxicol. 2017; 14 (1): 38. DOI: 10.1186/s12989-017-0219-z. 34. Ding X., Wang M., Chu H. et al. Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China. Toxicol. Lett. 2014; 228 (1): 25-33. DOI: 10.1016/j.toxlet. 2014.04.010. 35. Toyooka S., Mitsudomi T., Soh J. et al. Molecular oncology of lung cancer. Gen. Thorac. Cardiovasc. Surg. 2011. 59 (8). 527-537. DOI: 10.1007/s11748-010-0743-3. 36. Zhou W., Tian D., He J. et al. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget. 2016; 7 (15): 20691-20703. DOI: 10.18632/ oncotarget.7842. 37. Yang B., Chen D. Zhao H. et al. The effects for PM2.5 exposure on non-small-cell lung cancer induced motility and proliferation. Springerplus. 2016; 5 (1): 2059. DOI: 10.1186/ s40064-016-3734-8. 38. Иванов С.Д. Железо как канцерогенный экотоксикант. Токсикологический вестник. 2011; 107 (2): 34-41. 39. Вартанян А.А. Метаболизм железа, ферроптоз, рак. Российский биотерапевтический журнал. 2017; 16 (3): 14-20. DOI: 10.17650/1726-9784-2017-16-3-14-20. 40. Scanlon S.E., Scanlon C.D., Hegan D.C. et al. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis. 2017; 38 (6): 627-637. DOI: 10.1093/carcin/bgx038. 41. Sas-Nowosielska H., Pawlas N. Heavy metals in the cell nucleus - role in pathogenesis. Acta Biochim. Pol. 2015; 62 (1): 7-13. DOI: 10.18388/abp.2014_834. 42. Pandeh M., Fathi S., Zare Sakhvidi M.J. et al. Oxidative stress and early DNA damage in workers exposed to iron-rich metal fumes. Environ. Sci. Pollut. Res. 2017; 24 (10): 9645-9650. DOI: 10.1007/s11356-017-8657-6. 43. Shi Y.X., Wang Y., Li X. et al. Genome-wide DNA methylation profiling reveals novel epigenetic signatures in squamous cell lung cancer. BMC Genomics. 2017; 18 (1): 901. DOI: 10.1186/s12864-017-4223-3. 44. Wei H., Liang F., Cheng W. et al. The mechanisms for lung cancer risk of PM2.5: Induction of epithelial-mesenchymal transition and cancer stem cell properties in human nonsmall cell lung cancer cells. Environ. Toxicol. 2017; 32 (11): 2341-2351. DOI: 10.1002/tox.22437. 45. Miyazono K., Ehata S., Koinuma D. Tumor-promoting functions of transforming growth factor-в in progression of cancer. Ups. J. Med. Sci. 2012; 117 (2): 143-152. DOI: 10.3109/03009734.2011.638729. 46. Шевченко В.Е., Брюховецкий И.С., Никифорова З.Н. и др. Трансформирующий фактор роста бета-1 в онкогенезе аденокарциномы легкого человека. Успехи молекулярной онкологии. 2017; 4 (3): 67-74. 47. Yang D., Ma M., Zhou W. et al. Inhibition of miR-32 activity promoted EMT induced by PM2.5 exposure through the modulation of the Smad1-mediated signaling pathways in lung cancer cells. Chemosphere. 2017; 184: 289-298. DOI: 10.1016/j.chemosphere.2017.05.152. 48. Wang Y., Lin Z., Huang H. et al. AMPK is required for PM2.5-induced autophagy in human lung epithelial A549 cells. Int. J. Clin. Exp. Med. 2015; 8 (1): 58-72. 49. Liu T., Wu B., Wang Y. et al. Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kina-se/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells. Mol. Med. Report. 2015; 12 (2): 1914-1922. DOI: 10.3892/mmr.2015. 3577. 50. Longhin E., Holme J.A., Gutzkow K.B. et al. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part. Fibre Toxicol. 2013; 10: 63. DOI: 10.1186/1743-8977-10-63. 51. Deng X., Zhang F., Wang L., et al. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis. 2014; 19 (7): 1099-1112. DOI: 10.1007/s10495-014-0980-5. 52. Deng X., Feng N., Zheng M. et al. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim. Biophys. Acta Gen. Subj. 2017; 1861 (2): 112-125. DOI: 10.1016/j.bbagen.2016.11.009. 53. Li J., Li W.X., Bai C., Song Y. Particulate matter-induced epigenetic changes and lung cancer. Clin. Respir. J. 2017; 11 (5): 539-546. DOI: 10.1111/crj.12389. 54. Севергина Л.О., Бырса О.С., Кондратюк М.Р. Молекулярно-генетические основы развития и особенности диагностики мелкоклеточного рака легкого. Пространство и время. 2016; 3-4 (25-26): 284-290. Доступно на: https://cyberleninka.ru/article/v/molekulyarno-geneticheskie-osnovy-razvitiya-i-osobennosti-diagnostiki-melkokletochnogo-raka-lyogkogo [Дата обращения: 01.03.18]. 55. Mari-Alexandre J., Diaz-Lagares A., Villalba M. et al. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl. Res. 2017; 189: 76-92. DOI: 10.1016/j.trsl. 2017.05.008. 56. Bhargava A., Bunkar N., Aglawe A. et al. Epigenetic biomarkers for risk assessment of particulate matter associated lung cancer. Curr. Drug Targets. 2018; 19 (10): 1127-1147. DOI: 10.2174/1389450118666170911114342.