Инд. авторы: | Grigoryev Y.N., Ershov I.V. |
Заглавие: | Linear stability of a supersonic boundary layer on a plate under conditions of vibrational excitation and of viscous stratification |
Библ. ссылка: | Grigoryev Y.N., Ershov I.V. Linear stability of a supersonic boundary layer on a plate under conditions of vibrational excitation and of viscous stratification // Journal of Physics: Conference Series. - 2019. - Vol.1268. - Iss. 1. - Art.012021. - ISSN 1742-6588. - EISSN 1742-6596. |
Внешние системы: | DOI: 10.1088/1742-6596/1268/1/012021; РИНЦ: 41809923; SCOPUS: 2-s2.0-85073914849; WoS: 000561766800021; |
Реферат: | eng: An asymptotic theory of the neutral stability curve for a supersonic boundary layer of a vibrationally excited molecular gas on a plate is developed. The initial mathematical model of flow consists of equations of two-temperature viscous heat-conducting gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the inviscid and viscous parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In this case, the critical Reynolds number increases with excitation enhancement of the internal degrees of freedom of molecules, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number. © Published under licence by IOP Publishing Ltd. |
Ключевые слова: | Boundary layers; Continuum mechanics; Degrees of freedom (mechanics); Stability; Viscous heat conducting gas; Vibrationally excited; Vibrational excitation; Supersonic boundary layer; Linear stability theory; Internal degrees of freedom; Excitation enhancement; Critical Reynolds number; Vibrations (mechanical); Supersonic aircraft; Shear flow; Reynolds number; Ordinary differential equations; Molecules; Linear systems; Heat conduction; Gas dynamics; |
Издано: | 2019 |
Физ. характеристика: | 012021 |
Конференция: | Название: Всероссийская конференция и школа для молодых ученых, посвященные 100-летию академика Л.В. Овсянникова, «Математические проблемы механики сплошных сред» Аббревиатура: MPCM 2019 Город: Новосибирск Страна: Россия Даты проведения: 2019-05-13 - 2019-05-17 |
Цитирование: | 1. Lin C C 1955 The Theory of Hydrodynamic Stability (Cambridge: Cambridge Univ. Press) 2. Dunn D W and Lin C C 1955 J. Aero. Sci. 22 455 3. Mack L M 1969 Boundary Layer Stability Theory JPL Tech. Report, Document 900-277 (Pasadena: California Inst. Technology) 4. Grigoryev Yu N and Ershov I V 2017 Stability and Suppression of Turbulence in Relaxing Molecular Gas Flows (Cham: Springer Intern. Publishing) 5. Grigoryev Yu N and Ershov I V 2018 AIP Conf. Proceedings 2027 020008 6. Reshotko E 1960 (Pasadena: California Inst. Technology) Stability of the Compressible Laminar Boundary Layer Ph.D Thesis 7. Tricomi F G 1961 Differential Equations (New York: Blackie and Son Ltd) 8. Drazin P G and Reid W H 2004 Hydrodynamic Stability (Cambridge: Cambridge Univ. Press) 9. Miles J W 1960 J. Fluid Mech. 8 593 |