Инд. авторы: Chirikhin K.S., Ryabko B.Y.
Заглавие: Application of arti cial intelligence and data compression methods to time series forecasting
Библ. ссылка: Chirikhin K.S., Ryabko B.Y. Application of arti cial intelligence and data compression methods to time series forecasting // Applied Methods of Statistical Analysis. Statistical Computation and Simulation - AMSA'2019 (Novosibirsk, Russia, 18.09-20.09.2019): Proceedings of the International Workshop / Editors: Boris Lemeshko, Mikhail Nikulin, Narayanaswamy Balakrishnan. - 2019. - Novosibirsk. - P.553-560.
Внешние системы: РИНЦ: 41186694;
Реферат: eng: We consider the problem of time-series forecasting. Nowadays, widespread classical methods can successfully nd periodic patterns and simple types of trends. However, in real-life data there may be more complex regularities. For example, time series of economic indicators can have quite complex patterns, because their dynamics can be inuenced by participants, who, in turn, can use very complex strategies. In this paper we, rst, show how it is possible to combine several methods of forecasting into a single one in such a way that, asymptotically, the accuracy of the obtained method will be equal to the accuracy of the best method among the combined ones. Secondly, we use this approach to combine several methods of forecasting, including "classical" data compression algorithms, a method based on sensing multihead nite automata and a method that uses grammar-based codes. The results of computational experiments are presented.
Ключевые слова: arti cial intelligence; time series forecasting; time series models; universal coding;
Издано: 2019
Физ. характеристика: с.553-560
Конференция: Название: International Workshop "Applied Methods of Statistical Analysis. Statistical Computation and Simulation"
Аббревиатура: AMSA'2019
Город: Novosibirsk
Страна: Russia
Даты проведения: 2019-09-18 - 2019-09-20
Ссылка: http://www.amsa.conf.nstu.ru/amsa2019/
Цитирование: 1. Bille P., Gørtz I.L, Prezza N. (2017). Space-e-cient re-pair compression. In Data Compression Conference (DCC). IEEE. pp. 171-180. 2. Box G.E., Jenkins G.M., Reinsel G.C., Ljung G.M. (2015) Time series analysis: forecasting and control. John Wiley 3. Charikar M., Lehman E., Liu D., Panigrahy R., Prabhakaran M., Sahai A., Shelat A. (2005) The smallest grammar problem. IEEE Transactions on Information Theory. Vol. 51, pp. 2554-2576. 4. Cleveland R.B, Cleveland W.S., McRae J.E., Terpenning I. (1990) STL: A seasonal-trend decomposition. Journal of o-cial statistics. Vol. 6 pp. 3-73. 5. Hyndman R., Koehler A.B., Ord J.K., Snyder R.D. (2008) Forecasting with exponential smoothing: the state space approach. Springer Science 6. Kaastra I., Boyd M. (1996) Designing a neural network for forecasting nancial and economic time series. Neurocomputing. Vol. 10 pp. 215-236. 7. Kieer J.C., Yang E.H. (2000) Grammar-based codes: a new class of universal lossless source codes. IEEE Transactions on Information Theory. Vol. 46 pp. 737-754. 8. Krichevsky R. (1968) A relation between the plausibility of information about a source and encoding redundancy. Problems Inform. Transmission. Vol. 4 pp. 48-57. 9. Nevill-Manning C.G., Witten I.H. (1997) Identifying hierarchical structure in sequences: A linear-time algorithm. Journal of Arti cial Intelligence Research. Vol. 7 pp. 67-82. 10. Ryabko B.Y. (1988) Prediction of random sequences and universal coding. Problems of information transmission. Vol. 24 pp. 87-96. 11. Ryabko B., Astola J., Malyutov M. (2016) Compression-based methods of statistical analysis and prediction of time series. Springer International Publishing. 12. Sakamoto H., Kida T., Shimozono S. (2004) A space-saving linear-time algorithm for grammar-based compression. In International Symposium on String Processing and Information Retrieval pp. 218-229. 13. Smith T. (2013) On in nite words determined by stack automata. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013) 14. Tim S. (2018) Prediction of in nite words with automata. Theor. Comp. Sys. Vol. 62, pp. 653-681.