Инд. авторы: Blokhin A., Kruglova E., Semisalov B.
Заглавие: Modelling of polymeric fluid flow taking into account the electromagnetic impacts and the heat dissipation
Библ. ссылка: Blokhin A., Kruglova E., Semisalov B. Modelling of polymeric fluid flow taking into account the electromagnetic impacts and the heat dissipation // WSEAS Transactions on Systems and Control. - 2019. - Vol.14. - P.169-182. - ISSN 1991-8763.
Внешние системы: РИНЦ: 41645663; SCOPUS: 2-s2.0-85071021601;
Реферат: eng: A new mathematical model describing non-isothermal flow of incompressible viscoelastic polymeric liquid between two coaxial cylinders has been developed on the basis of the mesoscopic approach to polymer dynamics. This model is a system of non-linear PDEs taking into account the electromagnetic impacts and the dissipation of heat. Integral expression for determining the velocity of flow is derived and boundary value problem for temperature is posed. For calculating the velocity and temperature profiles Chebyshev approximations were used and the pseudospectral numerical algorithm was constructed. The stationary numerical solutions are obtained for wide range of values of physical parameters and for record-low values of the radius r0 of the inner cylinder. © 2019, World Scientific and Engineering Academy and Society. All rights reserved.
Ключевые слова: Pseudospectral method; Polymer dynamics; Mesoscopic approach; Heat dissipation; Coaxial cylinders; Chebyshev polynomials; Magnetohydrodynamics; Singularly perturbed problem;
Издано: 2019
Физ. характеристика: с.169-182
Цитирование: 1. Pokrovskii, V.N.: The Mesoscopic Theory of Polymer Dynamics. 2nd edn. Springer, Berlin (2010), 256 pp. 2. Vinogradov, G. V., Pokrovskii, V. N., Yanovsky, Yu. G.: Theory of Viscoelastic Behavior of Concentrated Polymer Solutions and Melts in One-Molecular Approximation and its Experimental Verification. Rheol. Acta 7, 258– 274 (1972) 3. Pyshnograi, G.V., Gusev, A. S. Pokrovskii, V.N.: Constitutive equations for weakly entangled linear polymers. Journal of Non-Newtonian Fluid Mechanics 164(1–3), 17–28 (2009) 4. Blokhin, A. M., Rudametova, A. S.: Stationary solutions of the equations for nonisothermal electroconvection of a weakly conducting incompressible polymeric liquid. Journal of Applied and Industrial Mathematics 9(2), 147– 156 (2015) 5. Blokhin, A. M., Semisalov, B. V.: A stationary flow of an incompressible viscoelastic fluid in a channel with elliptic cross section. Journal of Applied and Industrial Mathematics 9(1), 18–26 (2015) 6. Blokhin, A. M., Semisalov, B. V., Shevchenko, A.S.: Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid. Math. Modeling 28(10), 3–22 (2016) (in Russian) 7. Blokhin, A.M., Kruglova, E.A., Semisalov, B.V.: Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders. Computational Mathematics and Mathematical Physics 57(7), 1181–1193 (2017) 8. Semisalov, B. V.: A fast nonlocal algorithm for solving Neumann–Dirichlet boundary value problems with error control. Vychisl. Metody Programm. 17(4), 500—522 (2016) (in Russian) 9. Achieser, N. I.: Theory of Approximation. Frederick Ungar Publishing Co, New York (1956), 307 pp. 10. Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, Th. A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin Heidelberg (2006), 565 pp. 11. Babenko, K. I.: Fundamentals of numerical analysis. Moscow, Fizmatlit (1986) (in Russian), 744 pp. 12. Blokhin, A.M., Kruglova, E.A., Semisalov, B.V.: Numerical analysis of the non-isothermal flow of polymeric liquid between two coaxial cylinders. WSEAS Transactions on Fluid Mechanics 13, 26–36. Art.#4 (2018). 13. Altukhov, Yu.A., Gusev, A.S., Pyshnograi, G.V.: Introduction to the Mesoscopic Theory of Flowing Polymer Systems. Altai State Pedagogical Academy Press, Barnaul, (2012) (in Russian), 121 pp. 14. Sedov, L. I.: Mechanics Of Continuous Media. World Scientific (1997), 1368 pp. 15. Loitsyanskii, L. G., Stewartson, K.: Mechanics of Liquids and Gases. Stewartson Pergamon Press, Oxford (1966), 814 pp. 16. Vatazhin, A. B., Lubimov, G. A., Regirer, S. A.: Magneto-Gas Dynamic Flows in Channels. Nauka, Moscow (1970) (in Russian), 672 pp. 17. Shih I, Pai C: Introduction to the Theory of Compressible Flow. Literary Licensing, LLC (2013), 400 pp. 18. Blokhin, A. M., Rudametova, A. S.: Stationary flows of a weakly conducting incompressible polymeric liquid between coaxial cylinders. Journal of Applied and Industrial Mathematics 11(4), 486–493 (2017) 19. Shibata, Y.: On the R-Boundness for the Two Phase Problem with Phase Transitions: Compressiable–Incompressiable. Model Problem. Funkcialaj Ekvacioj 59, 243–287 (2016). 20. Nordling. C., Osterman, J.: Physics Handbook for Science and Engineering, 8th edn. Studentlitteratur AB (2006), 504 pp. 21. Achieser, A. I., Achieser, I. A. Electromagnetism and electromagnetic waves. High school publ., Moscow (1985) (in Russian), 504 pp. 22. Kalashnikov, S.G.: Electricity. Science, Moscow (1964) (in Russian) 23. Kubo, R.: Thermodynamics. An Advanced Course with Problems and Solutions. North Holland Publishing Company, Amsterdam 72(9– 10) (1968) 24. Trefethen, L. N.: Approximation Theory and Approximation Practice. SIAM (2013), 295 pp. 25. Belov, A. A., Kalitkin, N. N.: Evolutionary factorization and superfast relaxation count. Mathematical Models and Computer Simulations 7(2), 103–116 (2015).