Инд. авторы: Ryabko B., Fionov A.
Заглавие: Linear hash functions as a means of distortion-rate optimization in data embedding
Библ. ссылка: Ryabko B., Fionov A. Linear hash functions as a means of distortion-rate optimization in data embedding // IH and MMSec 2019 - Proceedings of the ACM Workshop on Information Hiding and Multimedia Security (Paris, France, 03.07-05.07.2019). - 2019: Association for Computing Machinery, Inc. - P.235-238. - ISBN: 978-1-4503-6821-6.
Внешние системы: DOI: 10.1145/3335203.3335740; РИНЦ: 41630111; SCOPUS: 2-s2.0-85069951867; WoS: 000520008000033;
Реферат: eng: Embedding hidden data is usually performed by introducing some distortions (errors) in cover objects. If the distortions exceed a certain bound, steganalysis can detect the presence of hidden data. So the problem is to embed as much data as possible and not exceed a permissible distortion level to ensure indetectability. We describe a general class of stegosystems that solves the problem by employing linear hash functions. The suggested stegosystems allow to transmit hidden information of the amount asymptotically close to the maximum possible under the given distortion. © 2019 Association for Computing Machinery.
Ключевые слова: Embeddings; Steganalysis; Linear hash function; Hidden information; General class; Embedding rates; Distortion rates; Data embedding; Steganography; Hash functions; Linear hash function; Embedding rate; Data hiding; Data embedding; Data hiding;
Издано: 2019
Физ. характеристика: с.235-238
Конференция: Название: 7th ACM Workshop on Information Hiding and Multimedia Security
Аббревиатура: IH and MMSec 2019
Город: Paris
Страна: France
Даты проведения: 2019-07-03 - 2019-07-05
Цитирование: 1. Tomáš Filler, Jan Judas, and Jessica Fridrich. 2011. Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. on Info. Forensics and Security 6, 1, 920-935. DOI: 10.1109/TIFS.2011.2134094 2. Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark. 2014. Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Information Security 2014, 1. DOI: 10.1186/1687-417X-2014-1 3. Christian Cachin. 2004. An information-theoretic model of steganography. Information and Computation 192, 1 (July 2004), 41-56. DOI: https://doi.org/10.1016/j.ic.2004.02.003 4. Boris Ryabko and Daniil Ryabko. 2011. Constructing perfect steganographic systems Information and Computation 209, 9 (September 2011), 1223-1230. DOI: https://doi.org/10.1016/j.ic.2011.06.004 5. Thanh Hai Thai, Rémy Cogranne, and Florent Retraint. 2014. Statistical model of quantized DCT coefficients: application in the steganalysis of Jsteg algorithm. IEEE Trans. Image Processing 23, 5 (May 2014), 1980-1993. DOI: 10.1109/TIP.2014.2310126 6. Vahid Sedighi, Rémy Cogranne, and Jessica Fridrich. 2016. Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inform. Forensics and Security 11, 2, 221-234. DOI: 10.1109/TIFS.2015.2486744 7. Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (2nd. ed.). Wiley-Interscience, New York, NY. 8. Ron Crandall. 1998. Some notes on steganography. (December 1998). Retrieved February 2, 2019 from http://dde.binghamton.edu/download/Crandall-matrix.pdf 9. Andreas Westfeld. 2001. High capacity despite better steganalysis (F5-A steganographic algorithm). In Proceedings of the 4th International Workshop on Information Hiding. LNCS 2137, Springer-Verlag, Berlin, Heidelberg, 289-302. DOI: 10.1007/3-540-45496-9 10. F. Galand and Grigory Kabatiansky. 2003. Information hiding by coverings. In Proceedings 2003 IEEE Information Theory Workshop. 151-154. DOI: 10.1109/ITW.2003.1216717 11. Jurgen Bierbrauer and Jessica Fridrich. 2008. Constructing good covering codes for applications in steganography. Transactions on Data Hiding and Multimedia Security III. LNCS 4920, Springer, Berlin, Heidelberg, 1-22. DOI: https://doi.org/10.1007/978-3-540-69019-1-1 12. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. 1996. Handbook of Applied Cryptography. CRC Press. 13. Jessica Fridrich and Miroslav Goljan. 2000. Robust hash functions for digital watermarking. In Proceedings of International Conference on Information Technology: Coding and Computing. IEEE, 173-178. DOI: 10.1109/ITCC.2000.844203 14. Valentin F. Kolchin, Boris A. Sevastyanov, and Vladimir P. Chistyakov. 1978. Random Allocations. V. H. Winston, Washington, New York, distributed solely by Halsted Press.