Цитирование: | 1. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6; 489:57–74. https://doi.org/10.1038/nature11247 PMID: 22955616
2. Yevshin I, Sharipov R, Kolmykov S, Kondrakhin Y, Kolpakov F. GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res. 2019 Jan; 47(D1):D100–D105. https://doi.org/10.1093/nar/gky1128 PMID: 30445619
3. Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO reports. 2018 Nov 9; 19(12):e46255. https://doi.org/10.15252/embr.201846255 PMID: 30413482
4. Cheneby J, Gheorghe M, Artufel M, Mathelier A, Ballester B. ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res. 2018 Jan 4; 46(D1):D267–D275. https://doi.org/10.1093/nar/gkx1092 PMID: 29126285
5. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012; 22(9):1813–1831. https://doi.org/10.1101/gr.136184.111 PMID: 22955991
6. Chao A, Bunge J. Estimating the number of species in a stochastics abundance model. Biometrics. 2002 Sep; 58:531–539. PMID: 12229987
7. Woodward M. Epidemiology: Study Design and Data Analysis. London: Chapman and Hall/CRC; 2013.
8. Hope VD, Hickman M, Tilling K. Capturing crack cocaine use: estimating the prevalence of crack cocaine use in London using capture–recapture with covariates. Addiction. 2005 Sep 15; 100 (11):1701–1708. https://doi.org/10.1111/j.1360-0443.2005.01244.x PMID: 16277630
9. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E. MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 2003 Jul 1; 31 (13):3576–3579. https://doi.org/10.1093/nar/gkg585 PMID: 12824369
10. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 2015 July 1; 43(W1): W39–W49. https://doi.org/10.1093/nar/gkv416 PMID: 25953851
11. Kulakovskiy IV, Vorontsov IE, Yevshin IS, Soboleva AV, Kasianov AS, Ashoor H, et al. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res. 2016 Jan 4; 44(D1):D116–D125. https://doi.org/10.1093/nar/gkv1249 PMID: 26586801
12. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018 Jan 4; 46(D1), D260–D266. https://doi.org/10.1093/nar/gkx1126 PMID: 29140473
13. Hume MA, Barrera LA, Gisselbrecht SS, Bulyk ML. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res. 2015 Jan 28; 43(D1):D117–D122.
14. Thomas R, Thomas S, Holloway AK, Pollard KS. Features that define the best ChIP-Seq peak calling algorithms. Brief Bioinform. 2017 May; 18(3):441–450. https://doi.org/10.1093/bib/bbw035 PMID: 27169896
15. Laajala TD, Raghav S, Tuomela S, Lahesmaa R, Aittokallio T, Elo LL. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics. 2009 Dec 18; 10(1):618.
16. Harmanci A, Rozowsky J, Gerstein M. MUSIC: identification of enriched regions in Chip-Seq experiments using a mappability-corrected multiscale signal processing framework. Genome Biol. 2014 Oct 8; 15(10):474. https://doi.org/10.1186/s13059-014-0474-3 PMID: 25292436
17. Koohy H, Down TA, Spivakov M, Hubbard T. A comparison of peak callers used for DNase-Seq data. PLoS ONE. 2014 May 8; 9(5):e96303. https://doi.org/10.1371/journal.pone.0096303 PMID: 24810143
18. Micsinai M, Parisi F, Strino F, Asp P, Dynlacht BD, Kluger Y. Picking ChIP-seq peak detectors for analyzing chromatin modification experiments, Nucleic Acids Res. 2012 May 1; 40(9):e70. https://doi.org/10.1093/nar/gks048 PMID: 22307239
19. Guo Y, Mahony S, Gifford DK. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 2012 Aug 9; 8(8):e1002638. https://doi.org/10.1371/journal.pcbi.1002638 PMID: 22912568
20. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008 Sep 17; 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137PMID: 18798982
21. Zhang X, Robertson G, Krzywinski M, Ning K, Droit A, Jones S, et al. PICS: probabilistic inference for ChIP-seq. Biometrics. 2011 Mar 14; 67(1):151–163. https://doi.org/10.1111/j.1541-0420.2010.01441.xPMID: 20528864
22. Narlikar L, Jothi R. ChIP-Seq data analysis: identification of protein-DNA binding sites with SISSRs peak-finder. Methods Mol. Biol. 2011 Nov 18; 802:305–322.
23. Chao A. Estimating the population size for capture–recapture data with unequal catchability. Biometrics. 1987 Dec; 43(4):783–791. PMID: 3427163
24. Lanumteang K, Bohning D. An extension of Chao’s estimator of population size based on the first three capture frequency counts. Comput. Stat. Data An. 2011 Feb 22; 55(7):2302–2311.
25. Zelterman D. Robust estimation in truncated discrete distributions with application to capture-recapture experiments. J. Stat. Plan. Inf. 1988 Mar 25; 18(2):225–237.
26. McCrea RS, Morgan BJT. Analysis of Capture-Recapture Data. London: Chapman and Hall/CRC; 2014.
27. Chapman DH. Some properties of the hypergeometric distribution with applications to zoological surveys. Univ. Calif. Publ. Stat. 1951; 1:131–160.
28. Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov F. GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 2017 Jan; 45(D1):D61–D67 https://doi.org/10.1093/nar/gkw951 PMID: 27924024
29. Kulakovskiy IV, Boeva VA, Favorov AV, Makeev VJ. Deep and wide digging for binding motifs in ChIP-Seq data. Bioinformatics. 2010 Oct 15; 26(20):2622–3. https://doi.org/10.1093/bioinformatics/btq488PMID: 20736340
30. Kolpakov F, Akberdin I, Kashapov T, Kolmykov S, Kondrakhin Y, Kutumova E, et al. BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data. Nucleic Acids Res [Preprint]. 2019 May 27. Available from: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz440/5498754 https://doi.org/10.1093/nar/gkz440.
|