Инд. авторы: | Кирдяшкин А.Г., Кирдяшкин А.А., Дистанов В.Э., Гладков И.Н. |
Заглавие: | Экспериментальное и теоретическое моделирование алмазоносных плюмов |
Библ. ссылка: | Кирдяшкин А.Г., Кирдяшкин А.А., Дистанов В.Э., Гладков И.Н. Экспериментальное и теоретическое моделирование алмазоносных плюмов // Геодинамика и тектонофизика. - 2019. - Т.10. - № 2. - С.247-263. - EISSN 2078-502X. |
Внешние системы: | DOI: 10.5800/GT-2019-10-2-0413; РИНЦ: 38303710; |
Реферат: | rus: Рассматриваются термохимические мантийные плюмы, имеющие тепловую мощность 1.6-1010 Вт eng: We consider thermochemical mantle plumes with thermal power 1.6-1010 W |
Ключевые слова: | скорость течения; сверхлитостатическое давление; расплав; свободно-конвективные течения; тепловая мощность; Термохимический плюм; Eruption conduit; flow velocity; superlithostatic pressure; melt; free-convection flows; thermal power; Thermochemical plume; канал излияния; |
Издано: | 2019 |
Физ. характеристика: | с.247-263 |
Цитирование: | 1. Atikinson E., Pryde R., 2006. Seismic Investigation of Selected Kimberlite Pipes in the Buffalo Head Hills Kimberlite Field, North-Central Alberta. Alberta Energy and Utilities Board, EUB/AGS Special Report 079, 5 p 2. Azhgirey G.D., 1956. Structural Geology. Moscow State University Publishing House, Moscow, 492 p. @@Ажгирей Г.Д. Структурная геология. М.: Изд-во МГУ, 1956. 492 с. 3. Chalapathi Rao N.V., Lehmann B., 2011. Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province. Earth-Science Reviews 107 (3-4), 315-324. https://doi.org/10.1016/j.earscirev.2011. 04.003 4. Davaille A., Limare A., Touitou F., Kumagai I., Vatteville J., 2011. Anatomy of a laminar starting thermal plume at high Prandtl number. Experiments in Fluids 50 (2), 285-300. https://doi.org/10.1007/s00348-010-0924-y 5. Dawson J.B., 1980. Kimberlites and Their Xenoliths. Springer-Verlag, Berlin-Heidelberg, 252 p. [Русский перевод: Доусон Дж. Кимберлиты и ксенолиты в них. М.: Мир, 1983. 300 с.] 6. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N., 2008. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 100 (1-4), 66-92. https://doi.org/10.1016/ j.lithos.2007.06.025 7. Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Глубинная геодинамика. Новосибирск: Изд-во СО РАН, филиал «Гео», 2001. 408 с 8. Fedortchouk Y., Matveev S., Carlson J.A., 2010. H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati Diamond Mine kimberlites, Northwest Territories, Canada. Earth and Planetary Science Letters 289 (3-4), 549-559. https://doi.org/10.1016/j.epsl.2009.11.049 9. Field M., Stiefenhofer J., Robey J., Kurszlaukis S., 2008. Kimberlite-hosted diamond deposits of southern Africa: A review. Ore Geology Reviews 34 (1-2), 33-75. https://doi.org/10.1016Zj.oregeorev.2007.11.002 10. Gladkov I.N., Distanov V.E., Kirdyashkin A.A., Kirdyashkin A.G., 2012. Stability of a melt/solid interface with reference to a plume channel. Fluid Dynamics 47 (4), 433-447. https://doi.org/10.1134/S0015462812040023 11. Jaques A.L., 1998. Kimberlite and lamproite diamond pipes. AGSO Journal of Australian Geology and Geophysics 17 (4), 153-162 12. Jaupart C., Mareschal J.-C., 2007. Heat flow and thermal structure of the lithosphere. In: G. Schubert (Ed.), Treatise on geophysics. Vol. 6. Crust and lithosphere dynamics. Elsevier, Amsterdam, p. 217-251. https://doi.org/10.1016/ B978-044452748-6.00104-8 13. Jaupart C., Mareschal J.-C., 2014. Constraints on crustal heat production from heat flow data. In: H. Holland, K. Turekian (Eds.), Treatise on geochemistry (Second Edition). Vol. 4. The crust. Elsevier, Amsterdam, p. 53-73. https:// doi.org/10.1016/B978-0-08-095975-7.00302-8 14. Kaminski E., Jaupart C., 2003. Laminar starting plumes in high-Prandtl-number fluids. Journal of Fluid Mechanics 478, 287-298. https://doi.org/10.1017/S0022112002003233 15. Kennedy C.S., Kennedy G.C., 1976. The equilibrium boundary between graphite and diamond. Journal of Geophysical Research 81 (14), 2467-2470. https://doi.org/10.1029/JB081i014p02467 16. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2004. Thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (9), 1005-1024 17. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2009. Heat transfer between a thermochemical plume channel and the surrounding mantle in the presence of horizontal mantle flow. Izvestiya, Physics of the Solid Earth 45 (8), 684-700. https://doi.org/10.1134/S1069351309080084 18. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., Gladkov I.N., Surkov N.V., 2005. Hydrodynamic processes associated with plume rise and conditions for eruption conduit formation. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (9), 869-885 19. Kirdyashkin A.A., Kirdyashkin A.G., 2016. On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth's surface. Geotectonics 50 (2), 209-222. https://doi.org/10.1134/S0016852116020059 20. Kirdyashkin A.A., Kirdyashkin A.G., Distanov V.E., Gladkov I.N., 2016. Geodynamic regimes of thermochemical mantle plumes. Russian Geology and Geophysics 57 (6), 858-867. https://doi.org/10.1016/j.rgg.2016.05.003 21. Kirdyashkin A.G., Kirdyashkin A.A., 2018. Hydrodynamics and heat and mass transfer in mushroom-shaped heads of thermochemical plumes. Geodynamics & Tectonophysics 9 (1), 263-286 @@Кирдяшкин А.Г., Кирдяшкин А.А. Гидродинамика и тепломассообмен в грибообразной голове термохимического плюма // Геодинамика и тектонофизика. 2018. Т. 9. № 1. С. 263-286. https://doi.org/10.5800/GT-2018-9-1-0348 22. Kirdyashkin A.G., Kirdyashkin A.A., Gladkov I.N., Distanov V.E., 2012. Experimental modeling of the effect of relative thermal power on the shape of a plume conduit and the structure of free-convection flow in it. Russian Geology and Geophysics 53 (7) 689-697 https://doi.org/10.1016/j.rgg.2012.05.007 23. Kotelkin V.D., Lobkovskii L.I., 2011. Thermochemical theory of geodynamical evolution. Doklady Earth Sciences 438 (1), 622-626. https://doi.org/10.1134/S1028334X11050333 24. Kumagai I., Davaille A., Kurita K., 2007. On the fate of thermally buoyant mantle plumes at density interfaces. Earth and Planetary Science Letters 254 (1-2), 180-193. https://doi.org/10.1016/j.epsl.2006.11.029 25. Lin S.-C., van Keken P.E., 2006. Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer. Geochemistry, Geophysics, Geosystems. 7 (2), Q02006. https://doi.org/10.1029/2005GC001071 26. Olson P., Singer H. 1985. Creeping plumes. Journal of Fluid Mechanics 158, 511-531. https://doi.org/10.1017/S002211 2085002749 27. Schlichting H., 1979. Boundary-Layer Theory. McGraw-Hill, 817 p 28. Torsvik T.H., Burke K., Steinberger B., Webb S.J., Ashwal L.D., 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature 466 (7304), 352-355. https://doi.org/10.1038/nature09216 29. Trubitsyn V.P., Kharybin E.V., 2010. Thermochemical mantle plumes. Doklady Earth Sciences 435 (2), 1656-1658. https://doi.org/10.1134/S1028334X10120226 30. Vatteville J., van Keken P.E., Limare A., Davaille A., 2009. Starting laminar plumes: Comparison of laboratory and numerical modeling. Geochemistry, Geophysics, Geosystems 10 (12), Q12013. https://doi.org/10.1029/2009GC00 2739 31. Whitehead J.A., Luther D.S., 1975. Dynamics of laboratory diapir and plume models. Journal of Geophysical Research 80 (5), 705-717. https://doi.org/10.1029/JB080i005p00705 32. Yang T., Fu R., 2014. Thermochemical piles in the lowermost mantle and their evolution. Physics of the Earth and Planetary Interiors 236, 109-116. https://doi.org/10.1016Zj.pepi.2014.04.006 33. Zhong S., 2006. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. Journal of Geophysical Research: Solid Earth 111 (B4), B04409. https:// doi.org/10.1029/2005JB003972 |