Цитирование: | 1. Blank, J.G. and Brooker R.A (1994). Experimental studies of carbon dioxide in silicate melts: solubility, speciation and stable isotope behavior. Reviews in Mineralogy and Geochemistry, 30: 157- 186
2. Brooker, R.A., Kohn, S.C., Holloway, J.R. and McMillan, P.F. (2001). Structural controls on the solubility of CO2 in silicate melts: part I: bulk solubility data. Chemical Geology, 174: 225-239
3. Dasgupta, R., and Hirschmann, M.M. (2010). The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298: 1-13
4. Dasgupta, R., Hirschmann, M.M. and Withers, A.C. (2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227: 73-85
5. Foley S.F., Yaxley G.M., Rosenthal A., Buhre S., Kiseeva E.S., Rapp R.P. and Jacob D.E. (2009). The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112: 274-283
6. Hammouda T., Moine B.N., Devidal J.L. and Vincent C. (2009) Trace element partitioning during partial melting of carbonated eclogites. Physics of the Earth and Planetary Interiors 174: 60-69
7. Huang W.-L. and Wyllie, P.J. (1976). Melting relationships in the systems CaO-CO2 and MgO- CO2 to 36 kilobars. Geochimica et Cosmochimica Acta 40: 129-132
8. Kiseeva, E.S., Litasov, K.D., Yaxley, G.M., Ohtani, E. and Kamenetsky, V.S. (2013). Melting and phase relations of carbonated eclogite at 9-21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. Journal of Petrology, 54: 1555-1583
9. Kjarsgaard, B.A. (1998). Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. Journal of Petrology 39: 2061-2075
10. Kjarsgaard, B.A., Hamilton, D.L., and Peterson, T.D. (1995). Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai. In Carbonatite Volcanism (pp. 163-190). Springer, Berlin, Heidelberg
11. Martin L.H.J., Schmidt M.W., Hannes B., Mattsson H.B., Ulmer P., Hametner K. and Günther D. (2012). Element partitioning between immiscible carbonatite-kamafugite melts with application to the Italian ultrapotassic suite. Chemical Geology 320-321: 96-112
12. Martin L.H.J., Schmidt M.W., Mattson H.B. and Guenther D. (2013). Element partitioning between immiscible carbonatite and silicate melts from dry and H2O-bearing systems at 1 - 3 GPa. Journal of Petrology 54: 2301 - 2338
13. Schmidt, M.W. and Weidendorfer, D. (2018). Carbonatites in oceanic hotspots. Geology, 46: 435- 438
14. Veksler I.V., Petibon C., Jenner G., Dorfman A.M., Dingwell D.B. (1998). Trace element partitioning in immiscible silicate and carbonate liquid systems: an initial experimental study using a centrifuge autoclave. Journal of Petrology 39: 2095-2104
15. Veksler I.V., Dorfman A.M., Dulski P., Kamenetsky V.S., Danyushevsky L.V., Jeffries T., Dingwell D.B. (2012). Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta 79: 20-40
16. Weidendorfer, D., Schmidt, M. W. and Mattsson, H. B. (2017). A common origin of carbonatite magmas. Geology 45: 507-510
17. Woolley A.R. and Kempe D.R.C. (1989). Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin-Hyman, London, 1-14
18. Wooley A.R. and Kjarsgaard B.A. (2008). Carbonatite occurrences of the world: map and database. Geological survey of Canada. Open file, 5796(1)
|