Инд. авторы: Polyansky O.P., Kargopolov S.A., Izokh A.E., Semenov A.N., Babichev A.V., Vasilevsky A.N.
Заглавие: THE ROLE OF MAGMATIC HEAT SOURCES IN THE FORMATION OF REGIONAL AND CONTACT METAMORPHIC AREAS IN WEST SANGILEN (TUVA, RUSSIA)
Библ. ссылка: Polyansky O.P., Kargopolov S.A., Izokh A.E., Semenov A.N., Babichev A.V., Vasilevsky A.N. THE ROLE OF MAGMATIC HEAT SOURCES IN THE FORMATION OF REGIONAL AND CONTACT METAMORPHIC AREAS IN WEST SANGILEN (TUVA, RUSSIA) // GEODYNAMICS & TECTONOPHYSICS. - 2019. - Vol.10. - Iss. 2. - P.309-323. - ISSN 2078-502X.
Внешние системы: DOI: 10.5800/GT-2019-10-2-0416; РИНЦ: 38303713; SCOPUS: 2-s2.0-85076601927; WoS: 000472645500006;
Реферат: eng: The tectonomagmatic evolution of the Sangilen massif has been described in detail in numerous publications, but little attention was given to heat sources related to the HT/LP metamorphism. Modeling of the magma transport to the upper-crust levels in West Sangilen shows that the NT/LP metamorphism is related to gabbro-monodiorite intrusions. This article is focused on the thermo-mechanical modeling of melting and lifting of melts in the crust, taking into account the density interfaces. The model of the Erzin granitoid massif shows that in case of fractional melting, the magma ascent mechanism is fundamentally different, as opposed to diapir upwelling - percolation take place along a magmatic channel or a system of channels. An estimated rate of diapiric rise in the crust amounts to 0.8 cm/yr, which is more than an order of magnitude lower than the rate of melt migration in case of fractional melting (25 cm/yr). In our models, a metamorphic thermal 'anticline' develops in stages that differ, probably, due to the modes of crust melting: batch melting occurs at the first stage, and fractional melting takes place at the second stage. It is probable that the change of melting modes from melting conditions in a 'closed' system to fractional melting conditions in 'open' systems is determined by tectonic factors. For the Sangilen massif, we have estimated the degrees of melting in the granulite, granite, and sedimentary-metamorphic layers of the crust (6, 15, and 5 vol. %, respectively).
Ключевые слова: LITHOSPHERE; GEODYNAMICS; MELT; SIBERIA; COMPLEX; MANTLE; DIAPIRISM; EARTHS CRUST; MINGLING DYKES; magmatic chamber; crust; zoning; melt; melting; Sangilen; contact metamorphism; modeling; heat transfer; SOUTH-EAST TUVA;
Издано: 2019
Физ. характеристика: с.309-323
Цитирование: 1. Bea F., 2012. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278-291. https://doi.org/10.1016/j.lithos.2012.01.017 2. Brown M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34 (11), 961-964. https://doi.org/10.1130/G22853A.! 3. Brown M., 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49 (3), 193-234. https://doi.org/10.2747/0020-6814.49.3.193 4. Clemens J.D., 2006. Melting of the continental crust: Fluid regimes, melting reactions, and source-rock fertility. In: M. Brown, T. Rushmer (Eds.), Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, p. 297-331 5. Droop G.T.R., Brodie K.H., 2012. Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: the roles of fluid-present and fluid-absent melting. Journal of Metamorphic Geology 30 (8), 843-864. https://doi.org/ 10.1111/j.1525-1314.2012.01001.x 6. Egorova V.V., Volkova N.I., Shelepaev R.A., Izokh A.E., 2006. The lithosphere beneath the Sangilen Plateau, Siberia: Evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts. Mineralogy and Petrology 88 (3-4), 419-441. https://doi.org/10.1007/s00710-006-0121-0 7. Elliot T., Spiegelman M., 2003. Melt migration in oceanic crustal production: a U-series perspective. In: R.L. Rudnick (Ed.), Treatise in geochemistry. Vol. 3. The crust. Elsevier-Pergamon, Oxford, p. 465-510 8. Hewitt I.J., 2010. Modelling melting rates in upwelling mantle. Earth and Planetary Science Letters 300 (3-4), 264-274. https://doi.org/10.1016/j.epsl.2010.10.010 9. Каргополов С.А. Метаморфизм мугурского зонального комплекса // Геология и геофизика. 1991. Т. 32. № 3. С. 109-119 10. Karmysheva I.V., Vladimirov V.G., VladimirovA.G., Shelepaev R.A., Yakovlev V.A., Vasyukova E.A., 2015. Tectonic position of mingling dykes in accretion-collision system of Early Caledonides of West Sangilen (South-East Tuva, Russia). Geodynamics & Tectonophysics 6 (3), 289-310. https://doi.org/10.5800/GT-2015-6-3-0183 11. Kelsey D.E., Hand M., 2015. On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers 6 (3), 311-356. https://doi.org/10.1016/j.gsf.2014.09.006 12. Kozakov I.K., Sal'nikova E.B., Bibikova E.V., Kirnozova T.I., Kotov A.B., Kovach V.P., 1999. Polychronous evolution of the paleozoic granitoid magmatism in the Tuva-Mongolia massif: U-Pb geochronological data. Petrology 7 (6), 592-601 13. Kronenberg A.K., Tullis J., 1984. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research: Solid Earth 89 (B6), 4281-4297. https://doi.org/10.1029/ JB089iB06p04281 14. Nahodilova R., Faryad Sh. W., Dolejsac D., Tropper P., Konzett J., 2011. High-pressure partial melting and melt loss in felsic granulites in the Kutna Hora complex, Bohemian Massif (Czech Republic). Lithos 125 (1-2), 641-658. https://doi.org/10.1016/j.lithos.2011.03.017 15. Pattison D.R.M., Chako T., Farquhar J., McFarlane C.R.M., 2003. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected from retrograde exchange. Journal of Petrology 44 (5), 867-900. https://doi.org/10.1093/petrology/44.5.867 16. Polyansky O.P., BabichevA.V., Korobeynikov S.N., Reverdatto V.V., 2010. Computer modeling of granite gneiss diapirism in the Earth's crust: Controlling factors, duration, and temperature regime. Petrology 18 (4), 432-446. https:// doi.org/10.1134/S0869591110040077 17. Polyansky O.P., Korobeynikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., 2009. Computer modeling of granite magma diapirism in the Earth’s crust. Doklady Earth Sciences 429 (8), 1380-1384. https://doi.org/10.1134/ S1028334X09080315 18. Polyansky O.P., Korobeynikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., 2014. Numerical modeling of mantle diapirism as a cause of intracontinental rifting. Izvestiya, Physics of the Solid Earth 50 (6), 839-852. https:// doi.org/10.1134/S1069351314060056 19. Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G., 2016. The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples. Russian Geology and Geophysics 57 (6), 843-857. https://doi.org/10.1016/j.rgg.2016.05.002 20. Полянский О.П., Семенов А.Н., Владимиров В.Г., Кармышева И.В., Владимиров А.Г., Яковлев В.А. Численная модель магматического минглинга (на примере Баянкольской габбро-гранитной серии, Cангилен, Tува) // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 385-4031. https://doi.org/ 10.5800/GT-2017-8-2-0247 21. Атлас «Опорные геолого-геофизические профили России». Глубинные сейсмические разрезы по профилям ГСЗ, отработанным в период с 1972 по 1995 год. Электронное издание. СПб.: Роснедра, ВСЕГЕИ, 2013 22. Rosenberg C.L., Handy M.R., 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology 23 (1), 19-28. https://doi.org/10.1111/j.1525-1314.2005. 00555.x 23. Sawyer E.W., 2001. Melt segregation in the continental crust: Distribution and movement of melt in anatectic rocks. Journal of Metamorphic Geology 19 (3), 291-309. https://doi.org/10.1046/j.0263-4929.2000.00312.x 24. Semenov A.N., Polyansky O.P., 2017. Numerical modeling of the mechanisms of magma mingling and mixing: A case study of the formation of complex intrusions. Russian Geology and Geophysics 58 (11), 1317-1332. https:// doi.org/10.1016/j.rgg.2017.11.001 25. Schmeling H., Marquart G., Weinberg R., Wallner H., 2019. Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust. Geophysical Journal International, 217 (1), 422-450. https://doi.org/10.1093/gji/ggz029 26. Шелепаев Р.А. Эволюция базитового магматизма Западного Сангилена (Юго-Восточная Тува): Автореф. дис. ... канд. геол.-мин. наук. Новосибирск, 2006. 16 с 27. Shelepaev R.A., Egorova V.V., Izokh A.E., Seltmann R., 2018. Collisional mafic magmatism of the fold-thrust belts framing southern Siberia (Western Sangilen, southeastern Tuva). Russian Geology and Geophysics 59 (5), 525-540. https:// doi.org/10.1016/j.rgg.2018.04.006 28. Sokol E.V., Polyansky O.P., Semenov A.N., Reverdatto V.V., Kokh S.N., Devyatiyarova A.S., Kolobov V.Yu., Khvorov P.V., Babichev A.V., 2019. High-grade contact metamorphism in the Kochumdek River valley (Podkamennaya Tunguska basin, East Siberia): Evidence for Magma Flow. Russian Geology and Geophysics 60 (4), 386-399. https://doi.org/ 10.15372/RGG2019088 29. Tirone M., 2018. Petrological geodynamics of mantle melting II. AlphaMELTS+ multiphase flow: dynamic fractional melting. Frontiers in Earth Science 6, Article 18. https://doi.org/10.3389/feart.2018.00018 30. Василевский А.Н., Болдырев М.А., Михеев В.В., Дергачев А.А., Красавин В.В., Кирин Ю.М., Фомин Ю.Н., Филина А.Г., Благовидова Т.Я., Кучай О.А. Научно-технический отчет Алтае-Саянской опытно-методической сейсмологической экспедиции. Новосибирск: Изд-во ИГиГ СО АН СССР, 1985. 243 с 31. Vigneresse J.L., Barbey P., Cuney M., 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology 37 (6), 1579-1600. https://doi.org/10.1093/ petrology/37.6.1579 32. Владимиров В.Г., Кармышева И.В., Яковлев В.А., Травин А.В., Цыганков А.А., Бурмакина Г.Н., 2017. Термохронология минглинг-даек западного Сангилена (юго-восточная Тува): свидетельства развала коллизионной системы на северо-западной окраине Тувино-Монгольского массива // Геодинамика и тектонофизика. 2017. Т. 8. № 2. C. 283-310 33. Yegorova T.P., Pavlenkova G.A., 2015. Velocity-density models of the Earth's crust and upper mantle from the Quartz, Craton, and Kimberlite superlong seismic profiles. lzvestiya, Physics of the Solid Earth 51 (2), 250-267. https:// doi.org/10.1134/S1069351315010048 34. Zorin Y.A., 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306 (1), 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6