Цитирование: | 1. Bea F., 2012. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278-291. https://doi.org/10.1016/j.lithos.2012.01.017
2. Brown M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34 (11), 961-964. https://doi.org/10.1130/G22853A.!
3. Brown M., 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49 (3), 193-234. https://doi.org/10.2747/0020-6814.49.3.193
4. Clemens J.D., 2006. Melting of the continental crust: Fluid regimes, melting reactions, and source-rock fertility. In: M. Brown, T. Rushmer (Eds.), Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, p. 297-331
5. Droop G.T.R., Brodie K.H., 2012. Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: the roles of fluid-present and fluid-absent melting. Journal of Metamorphic Geology 30 (8), 843-864. https://doi.org/ 10.1111/j.1525-1314.2012.01001.x
6. Egorova V.V., Volkova N.I., Shelepaev R.A., Izokh A.E., 2006. The lithosphere beneath the Sangilen Plateau, Siberia: Evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts. Mineralogy and Petrology 88 (3-4), 419-441. https://doi.org/10.1007/s00710-006-0121-0
7. Elliot T., Spiegelman M., 2003. Melt migration in oceanic crustal production: a U-series perspective. In: R.L. Rudnick (Ed.), Treatise in geochemistry. Vol. 3. The crust. Elsevier-Pergamon, Oxford, p. 465-510
8. Hewitt I.J., 2010. Modelling melting rates in upwelling mantle. Earth and Planetary Science Letters 300 (3-4), 264-274. https://doi.org/10.1016/j.epsl.2010.10.010
9. Каргополов С.А. Метаморфизм мугурского зонального комплекса // Геология и геофизика. 1991. Т. 32. № 3. С. 109-119
10. Karmysheva I.V., Vladimirov V.G., VladimirovA.G., Shelepaev R.A., Yakovlev V.A., Vasyukova E.A., 2015. Tectonic position of mingling dykes in accretion-collision system of Early Caledonides of West Sangilen (South-East Tuva, Russia). Geodynamics & Tectonophysics 6 (3), 289-310. https://doi.org/10.5800/GT-2015-6-3-0183
11. Kelsey D.E., Hand M., 2015. On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers 6 (3), 311-356. https://doi.org/10.1016/j.gsf.2014.09.006
12. Kozakov I.K., Sal'nikova E.B., Bibikova E.V., Kirnozova T.I., Kotov A.B., Kovach V.P., 1999. Polychronous evolution of the paleozoic granitoid magmatism in the Tuva-Mongolia massif: U-Pb geochronological data. Petrology 7 (6), 592-601
13. Kronenberg A.K., Tullis J., 1984. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research: Solid Earth 89 (B6), 4281-4297. https://doi.org/10.1029/ JB089iB06p04281
14. Nahodilova R., Faryad Sh. W., Dolejsac D., Tropper P., Konzett J., 2011. High-pressure partial melting and melt loss in felsic granulites in the Kutna Hora complex, Bohemian Massif (Czech Republic). Lithos 125 (1-2), 641-658. https://doi.org/10.1016/j.lithos.2011.03.017
15. Pattison D.R.M., Chako T., Farquhar J., McFarlane C.R.M., 2003. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected from retrograde exchange. Journal of Petrology 44 (5), 867-900. https://doi.org/10.1093/petrology/44.5.867
16. Polyansky O.P., BabichevA.V., Korobeynikov S.N., Reverdatto V.V., 2010. Computer modeling of granite gneiss diapirism in the Earth's crust: Controlling factors, duration, and temperature regime. Petrology 18 (4), 432-446. https:// doi.org/10.1134/S0869591110040077
17. Polyansky O.P., Korobeynikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., 2009. Computer modeling of granite magma diapirism in the Earth’s crust. Doklady Earth Sciences 429 (8), 1380-1384. https://doi.org/10.1134/ S1028334X09080315
18. Polyansky O.P., Korobeynikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., 2014. Numerical modeling of mantle diapirism as a cause of intracontinental rifting. Izvestiya, Physics of the Solid Earth 50 (6), 839-852. https:// doi.org/10.1134/S1069351314060056
19. Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G., 2016. The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples. Russian Geology and Geophysics 57 (6), 843-857. https://doi.org/10.1016/j.rgg.2016.05.002
20. Полянский О.П., Семенов А.Н., Владимиров В.Г., Кармышева И.В., Владимиров А.Г., Яковлев В.А. Численная модель магматического минглинга (на примере Баянкольской габбро-гранитной серии, Cангилен, Tува) // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 385-4031. https://doi.org/ 10.5800/GT-2017-8-2-0247
21. Атлас «Опорные геолого-геофизические профили России». Глубинные сейсмические разрезы по профилям ГСЗ, отработанным в период с 1972 по 1995 год. Электронное издание. СПб.: Роснедра, ВСЕГЕИ, 2013
22. Rosenberg C.L., Handy M.R., 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology 23 (1), 19-28. https://doi.org/10.1111/j.1525-1314.2005. 00555.x
23. Sawyer E.W., 2001. Melt segregation in the continental crust: Distribution and movement of melt in anatectic rocks. Journal of Metamorphic Geology 19 (3), 291-309. https://doi.org/10.1046/j.0263-4929.2000.00312.x
24. Semenov A.N., Polyansky O.P., 2017. Numerical modeling of the mechanisms of magma mingling and mixing: A case study of the formation of complex intrusions. Russian Geology and Geophysics 58 (11), 1317-1332. https:// doi.org/10.1016/j.rgg.2017.11.001
25. Schmeling H., Marquart G., Weinberg R., Wallner H., 2019. Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust. Geophysical Journal International, 217 (1), 422-450. https://doi.org/10.1093/gji/ggz029
26. Шелепаев Р.А. Эволюция базитового магматизма Западного Сангилена (Юго-Восточная Тува): Автореф. дис. ... канд. геол.-мин. наук. Новосибирск, 2006. 16 с
27. Shelepaev R.A., Egorova V.V., Izokh A.E., Seltmann R., 2018. Collisional mafic magmatism of the fold-thrust belts framing southern Siberia (Western Sangilen, southeastern Tuva). Russian Geology and Geophysics 59 (5), 525-540. https:// doi.org/10.1016/j.rgg.2018.04.006
28. Sokol E.V., Polyansky O.P., Semenov A.N., Reverdatto V.V., Kokh S.N., Devyatiyarova A.S., Kolobov V.Yu., Khvorov P.V., Babichev A.V., 2019. High-grade contact metamorphism in the Kochumdek River valley (Podkamennaya Tunguska basin, East Siberia): Evidence for Magma Flow. Russian Geology and Geophysics 60 (4), 386-399. https://doi.org/ 10.15372/RGG2019088
29. Tirone M., 2018. Petrological geodynamics of mantle melting II. AlphaMELTS+ multiphase flow: dynamic fractional melting. Frontiers in Earth Science 6, Article 18. https://doi.org/10.3389/feart.2018.00018
30. Василевский А.Н., Болдырев М.А., Михеев В.В., Дергачев А.А., Красавин В.В., Кирин Ю.М., Фомин Ю.Н., Филина А.Г., Благовидова Т.Я., Кучай О.А. Научно-технический отчет Алтае-Саянской опытно-методической сейсмологической экспедиции. Новосибирск: Изд-во ИГиГ СО АН СССР, 1985. 243 с
31. Vigneresse J.L., Barbey P., Cuney M., 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology 37 (6), 1579-1600. https://doi.org/10.1093/ petrology/37.6.1579
32. Владимиров В.Г., Кармышева И.В., Яковлев В.А., Травин А.В., Цыганков А.А., Бурмакина Г.Н., 2017. Термохронология минглинг-даек западного Сангилена (юго-восточная Тува): свидетельства развала коллизионной системы на северо-западной окраине Тувино-Монгольского массива // Геодинамика и тектонофизика. 2017. Т. 8. № 2. C. 283-310
33. Yegorova T.P., Pavlenkova G.A., 2015. Velocity-density models of the Earth's crust and upper mantle from the Quartz, Craton, and Kimberlite superlong seismic profiles. lzvestiya, Physics of the Solid Earth 51 (2), 250-267. https:// doi.org/10.1134/S1069351315010048
34. Zorin Y.A., 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306 (1), 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6
|