Инд. авторы: Ashchepkov I.V., Ivanov A.S., Kostrovitsky S.I., Vavilov M.A., Babushkina S.A., Vladykin N.V., Tychkov N.S., Medvedev N.S.
Заглавие: MANTLE TERRANES OF THE SIBERIAN CRATON: THEIR INTERACTION WITH PLUME MELTS BASED ON THERMOBAROMETRY AND GEOCHEMISTRY OF MANTLE XENOCRYSTS
Библ. ссылка: Ashchepkov I.V., Ivanov A.S., Kostrovitsky S.I., Vavilov M.A., Babushkina S.A., Vladykin N.V., Tychkov N.S., Medvedev N.S. MANTLE TERRANES OF THE SIBERIAN CRATON: THEIR INTERACTION WITH PLUME MELTS BASED ON THERMOBAROMETRY AND GEOCHEMISTRY OF MANTLE XENOCRYSTS // GEODYNAMICS & TECTONOPHYSICS. - 2019. - Vol.10. - Iss. 2. - P.197-245. - ISSN 2078-502X.
Внешние системы: DOI: 10.5800/GT-2019-10-2-0412; РИНЦ: 38303708; SCOPUS: 2-s2.0-85076620932; WoS: 000472645500002;
Реферат: eng: We have studied variations in the structure and composition of minerals from the pipes of the Yakutian kimberlite province (YKP) in different mantle terranes of the Siberian craton. The study was based on an extensive database, including the microprobe analysis datasets consolidated by IGM, IG, IEC and IGDNM SB RAS and ALROSA and geochemical analysis of minerals performed by LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The reconstruction shows layering under the tubes, including 6-7 slab that were probably formed due to subduction; the slabs are separated by pyroxenitic, eclogitic and metasomatic layers and dunite lenses. Transects and mantle profiles across kimberlite fields are constructed. Within the limits of the revealed tectonic terranes, we assume a collage of microplates formed in the early - middle Archean. Extended submeridional structures of the tectonic terranes are not always confirmed at the mantle level. Beneath the Anabar and Aldan shields, the mantle sections show more coarse layers and 3-4 large horizons of dunites with garnet and pyroxene nests separated by ilmenite-phlogopite metasomatites and pyroxenites. Terranes representing the suture zones between the protocratons (e.g. Khapchan) are often saturated with eclogites and pyroxenites that may occur as leghthy ascending bodies of magmatic eclogites penetrating through the mantle lithosphere structure (ML). A nearly ubiquitous pyroxenite layer at the level of 3.5-4.5 GPa formed probably in the early Archean with a high heat flux during melting of eclogites and was subsequently traced by plume melts. Within the early Archean protocratons - granite-greenstone terranes (Tungus, Markha, Berekta, and Sharyzhalgai, similar to 3.8-3.0 Gyr [Gladkochub et al., 2019], the mantle lithosphere is less depleted and largely metasomatized. The ML structure of the Daldyn and Magan granulite-orthogneiss terranes is layered with folding revealed in the north-to-south sections from the Udachnaya pipe to the Krasnopresnenskaya pipe, which is less pronounced in the latitudinal direction. From the Daldyn field to the Alakit field, there is an increase in the degree of metasomatism, and higher alkalinity of pyroxenes and larger amounts of phlogopite are noted. The most productive Aikhal and Yubileinaya pipes are confined to a dunite core, which is accompanied by a change in the specialization of high-charge elements Ta-Nb to Zr-Hf. Within the limits of the Magan terrane, the thin-layer structure of the middle and upper parts of the craton keel is replaced with a sharply depleted productive horizon at its base. The mantle of the granite-greenstone Markha terrrein comprises eclogite (often pelitic) horizons, which suggests subduction of the continental lithosphere or sediments. In the central and northern parts of the Siberian craton, most structures in the mantle are sinking to the west at small angles. The geochemistry features of garnets and pyroxenes from various mantle terranes are considered in detail.
Ключевые слова: KAAPVAAL CRATON; STRUCTURE BENEATH; SULFIDE INCLUSIONS; RE-OS; MIR KIMBERLITE; GARNET PERIDOTITES; TRACE-ELEMENT; LITHOSPHERIC MANTLE; UDACHNAYA KIMBERLITE PIPE; SINGLE-CLINOPYROXENE THERMOBAROMETRY; interaction; plume; stratification/layering; geochemistry of rare elements; transect; kimberlite; garnet; eclogite; peridotite; thermobarometry; Siberian craton; terrane; mantle lithosphere; oxidative potential;
Издано: 2019
Физ. характеристика: с.197-245
Цитирование: 1. Afanasiev V.P., Ashchepkov I.V., Verzhak V.V., O'Brien H., Palessky S.V., 2013. PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia. Journal of Asian Earth Sciences 70-71, 45-63. https://doi.org/10.1016/j.jseaes.2013.03.002 2. Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S., 2013. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160-161, 201-215. https://doi.org/10.1016/j.lithos.2012.11.014 3. Agashev A.M., Pokhilenko N.P., Tolstov A.V., Polyanichko V.G., Mal'kovets V.G., Sobolev N.V., 2004. New age data on kimberlites from the Yakutian diamondiferous province. Doklady Earth Sciences 399 (8), 1142-1145 4. Agee C.B., 1998. Crystal-liquid density inversions in terrestrial and lunar magmas. Physics of the Earth and Planetary Interiors 107 (1-3), 63-74 https://doi.org/10.1016/S0031-9201(97)00124-6 5. Artemieva I.M., Thybo H., Cherepanova Y., 2019. Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth and Planetary Science Letters 505, 13-19. https://doi.org/10.1016Zj.epsl.2018.09.034 6. Ashchepkov I.V., 2011. Program of mantle thermometers and barometers, and the use: reconstruction and calibration of PT methods. Vestnik ONZ RAN 3, NZ6008 @@Ащепков И.В. Программа мантийных термометров и барометров, использование: реконструкции и калибровки PT методов // Вестник ОНЗ РАН. 2011. Т. 3. NZ6008 https://doi.org/10.2205/2011NZ000138 7. Ashchepkov I.V., Alymova N.V., Logvinova A.M., Vladykin N.V., Kuligin S.S., Mityukhin S.I., Downes H., Stegnitsky Y.B., Prokopiev S.A., Salikhov R.F., Palessky S.V., Khmelnikova O.S., 2014. Picroilmenites in Yakutian kimberlites: Variations and genetic models. Solid Earth 5 (2), 915-938. https://doi.org/10.5194/se-5-915-2014 8. Ashchepkov I.V., Kuligin S.S., Vladykin N.V., Downes H., Vavilov M.A., Nigmatulina E.N., Babushkina S.A., Tychkov N.S., Khmelnikova O.S., 2016. Comparison of mantle lithosphere beneath Early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geoscience Frontiers 7 (4), 639-662. https://doi.org/10.1016/ j.gsf.2015.06.004 9. Ashchepkov I.V., Logvinova A.M., Ntaflos T., Vladykin N.V., Kostrovitsky S.I., Spetsius Z., Mityukhin S.I., Prokopyev S.A., Medvedev N.S., Downes H., 2017b. Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle sub-terranes beneath central Yakutia? Geoscience Frontiers 8 (4), 671-692. https://doi.org/10.1016/j.gsf.2016.08.004 10. Ashchepkov I.V., Logvinova A.M., Reimers L.F., Ntaflos T., Spetsius Z.V., Vladykin N.V., Downes H., Yudin D.S., Travin A.V., Makovchuk I.V., Palesskiy V.S., Khmel'nikova O.S., 2015. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geoscience Frontiers 6 (5), 687-714. https://doi.org/10.1016/j.gsf.2014.08.005 11. Ashchepkov I.V., Ntaflos T., Kuligin S.S., Malygina E.V., Agashev A.M., Logvinova A.M., Mityukhin S.I., Alymova N.V., Vladykin N.V., Palessky S.V., Khmelnikova O.S., 2013b. Deep-seated xenoliths from the Brown Breccia of the Udachnaya Pipe, Siberia. In: D. Graham Pearson, H.S. Grütter, J.W. Harris, B.A. Kjarsgaard, H. O'Brien, N.V. Chalapathi Rao, S. Sparks (Eds.), Proceedings of 10th International Kimberlite Conference. Vol. 1 (Special Issue of the Journal of the Geological Society of India), Springer, New Delhi, p. 59-73. https://doi.org/10.1007/978-81-322-1170-9_5 12. Ashchepkov I.V., Ntaflos T., Logvinova A.M., Spetsius Z.V., Downes H., Vladykin N.V., 2017а. Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems. Geoscience Frontiers 8 (4), 775-795 https://doi.org/10.1016/j.gsf.2016.06.012 13. Ashchepkov I.V., Ntaflos T., Spetsius Z.V., Salikhov R.F., Downes H., 2017c. Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia). Geoscience Frontiers 8 (4), 693-710. https://doi.org/10.1016/j.gsf.2016.05.008 14. Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Afanasiev V.P., Pokhilenko L.N., Kuligin S.S., Malygina E.V., Alymova N.A., Kostrovitsky S.I., Rotman A.Y., Mityukhin S.I., Karpenko M.A., Stegnitsky Y.B., Khemelnikova O.S., 2010. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485 (1-4), 17-41. https://doi.org/10.1016/j.tecto.2009.11.013 15. Ashchepkov I.V., Vladykin N.N., Ntaflos T., Kostrovitsky S.I., Prokopiev S.A., Downes H., Smelov A.P., Agashev A.M., Logvinova A.M., Kuligin S.S., Tychkov N.S., Salikhov R.F., Stegnitsky Yu.B., Alymova N.V., Vavilov M.A., Minin V.A., Babushkina S.A., Ovchinnikov Yu.I., Karpenko M.A., Tolstov A.V., Shmarov G.P., 2014a. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics 634 (1-4), 55-75. https://doi.org/10.1016/j.tecto.2014.07.017 16. Ashchepkov I. V., Vladykin N.V., Nikolaeva I.V., Palessky S.V., Logvinova A.M., Saprykin A.I., Khmel'nikova O.S., Anoshin G.N., 2004. Mineralogy and geochemistry of mantle inclusions and mantle column structure of the Yubileinaya kimberlite pipe, Alakit field, Yakutia. Doklady Earth Sciences 395 (3), 378-384 17. Ashchepkov I.V., Vladykin N.V., Ntaflos T., Downes H., Mitchell R., Smelov A.P., Alymova N.V., Kostrovitsky S.I., Rotman A.Ya, Smarov G.P., Makovchuk I.V., Stegnitsky Yu.B., Nigmatulina E.N., Khmelnikova O.S., 2013a. Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons. Gondwana Research 23 (1), 4-24. https://doi.org/10.1016/j.gr.2012.03.009 18. Ashchepkov I.V., Vladykin N.V., Saprykin A.I., Khmelnikova O.S., Anoshin G.N., 2001. Composition and thermal structure of the mantle in peripheral parts of Siberian craton. Revista Brasileira de Geociencias 31 (4), 493-496 19. Aulbach S., Griffin W.L., Pearson N.J., O'Reilly S.Y., Kivi K., Doyle B.J., 2004. Mantle formation and evolution, Slave craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology 208 (1-4), 61-88. https://doi.org/10.1016/j.chemgeo.2004.04.006 20. Babushkina S.A., 2013. Typomorphism of garnets from the Zapretnaya pipe. Razvedka i Okhrana Nedr (Exploration and Protection of Mineral Resources) (12), 13-16 @@Бабушкина С.А. Типоморфизм гранатов трубки Запретная // Разведка и охрана недр. 2013. № 12. С. 13-16 21. Bascou J., Doucet L.S., Saumet S., Ionov D.A., Ashchepkov I. V., Golovin A. V., 2011. Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth and Planetary Science Letters 304 (1-2), 71-84. https://doi.org/10.1016/j.epsl.2011.01.016 22. Batumike J.M., Griffin W.L., O'Reilly S.Y., 2009. Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 112 (Supplement 1), 166-176. https://doi.org/10.1016/j.lithos.2009.04.020 23. Beard B.L., Fraracci K.N., Taylor L.A., Snyder G.A., Clayton R.N., Mayeda T.K., Sobolev N.V., 1996. Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contributions to Mineralogy and Petrology 125 (4), 293-310. https://doi.org/10.1007/s004100050223 24. Boyd F.R., 1973. A pyroxene geotherm. Geochimica et Cosmochimica Acta 37 (12), 2533-2546. https://doi.org/ 10.1016/0016-7037(73)90263-9 25. Boyd F.R., Nixon P.H., 1978. Ultramafic nodules from the Kimberley pipes, South Africa. Geochimica et Cosmochimica Acta 42 (9), 1367-1382. https://doi.org/10.1016/0016-7037(78)90042-X 26. Boyd F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W., 1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 128 (2-3), 228-246. https://doi.org/10.1007/s004100050305 27. Brey G.P., Köhler T., 1990. Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31 (6), 1353-1378. https://doi.org/10.1093/ petrology/31.6.1353 28. Bushenkova N., Tychkov S., Koulakov I., 2002. Tomography on PP-P waves and its application for investigation of the upper mantle in central Siberia. Tectonophysics 358 (1-4), 57-76. https://doi.org/10.1016/S0040-1951(02) 00417-1 29. Condie K.C., 2004. Supercontinents and superplume events: distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors 146 (1-2), 319-332. https://doi.org/10.1016/j.pepi.2003.04.002 30. Dawson J.B., 1980. Kimberlites and Their Xenoliths. Springer-Verlag, Berlin, New York, 208 p 31. Deschamps F., Godard M., Guillot S., Hattori K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96-127. https://doi.org/10.1016/j.lithos.2013.05.019 32. Egorov K.N., Kiselev A.I., Men'shagin Y.V., Minaeva Y.A., 2010. Lamproite and kimberlite of the Sayany area: Composition, sources, and diamond potential. Doklady Earth Sciences 435 (2), 1670-1675. https://doi.org/10.1134/ S1028334X10120251 33. Egorov K.N., Solov'eva L.V., Kovach V.P., Men'shagin Yu.V., Maslovskaya M.N., Sekerin A.P., Bankovskaya E.V., 2006. Petrological features of olivine-phlogopite lamproites of the Sayan region: Evidence from Sr-Nd isotope and ICP-MS trace-element data. Geochemistry International 44 (7), 729-735. https://doi.org/10.1134/S0016702906070093 34. Ernst W.G., 2017. Earth's thermal evolution, mantle convection, and Hadean onset of plate tectonics. Journal of Asian Earth Sciences 145 (Part B), 334-348 https://doi.org/10.1016/jjseaes.2017.05.037 35. Evensen N.M., Hamilton P.J., O'Nions R.K., 1978. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42 (8), 1199-1212. https://doi.org/10.1016/0016-7037(78)90114-X 36. Foley S.F., Pinter Z, 2018. Chapter 1 - Primary melt compositions in the Earth's mantle. In: Y. Kono, C. Sanloup (Eds.), Magmas Under Pressure. Advances in High-Pressure Experiments on Structure and Properties of Melts. Elsevier, Amsterdam, p. 3-42. https://doi.org/10.1016/B978-0-12-811301-1.00001-0 37. Foley S.F., Yaxley G.M., Rosenthal A., Buhre S., Kiseeva E.S., Rapp R.P., Jacob D.E., 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112 (Supplement 1), 274-283. https://doi.org/10.1016/j.lithos.2009.03.020 38. Гаранин В.К, Звездин A.B., Округин Г.В. Минералогия оксидных минералов из кимберлитов трубки Моркока в связи с оценкой ее алмазоносности (Якутская алмазоносная провинция) // Вестник Московского университета. Серия 4: Геология. 1998. № 4. С. 39-46 39. Gaul O.F., Griffin W.L., O'Reilly S.Y., Pearson N.J., 2000. Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters 182 (3-4), 223-235. https://doi.org/10.1016/S0012-821X(00)00243-0 40. Gerya T., 2014. Precambrian geodynamics: Concepts and models. Gondwana Research 25 (2), 442-463. https:// doi.org/10.1016/j.gr.2012.11.008 41. Gladkochub D.P., DonskayaT.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H., 2019. U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean. Gondwana Research 65, 1-16. https://doi.org/ 10.1016/j.gr.2018.07.007. 42. Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Natapov L.M., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., 2006. Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 29 (3), 169-174 43. Gornova M.A., Belyaev V.A., Belozerova O.Yu., 2013. Textures and geochemistry of the Saramta peridotites (Siberian craton): Melting and refertilization during early evolution of the continental lithospheric mantle. Journal of Asian Earth Sciences 62, 4-17. https://doi.org/10.1016/j.jseaes.2012.10.004 44. Граханов А.С., Зарукин Р.А., Богуш И.Н., Ядренкин А.Б. Открытие верхнетриасовых россыпей алмазов в Оленекском заливе моря Лаптевых // Отечественная геология. 2009. № 1. C. 53-61] 45. Gregoire M., Bell D., Le Roex A., 2002. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contributions to Mineralogy and Petrology 142 (5), 603-625. https://doi.org/10.1007/s00410-001-0315-8 46. Gregoire M., Bell D.R., Le Roex A.P., 2003. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. Journal of Petrology 44 (4), 629-657. https://doi.org/10.1093/petrology/44. 4.629 47. Griffin W.L., Fisher N.I., Friedman J., Ryan C.G., O'Reilly S.Y., 1999а. Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. Journal of Petrology 40 (5), 679-704. https://doi.org/ 10.1093/petroj/40.5.679 48. Griffin W.L., Natapov L.M., O'Reilly S.Y., van Achterbergh E., Cherenkova A.F., Cherenkov V.G., 2005. The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81 (1-4), 167-187. https://doi.org/10.1016/j.lithos.2004.10.001 49. Griffin W.L., O'Reilly S.Y., 2007. Cratonic lithospheric mantle: is anything subducted? Episodes 30 (1), 43-53 50. Griffin W.L., O'Reilly S.Y., Abe N., Aulbach S., Davies R.M., Pearson N.J., Doyle B.J., Kivi K., 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Research 127 (1-3), 19-41. https://doi.org/10.1016/S0301-9268(03) 00180-3 51. Griffin W.L., O'Reilly S.Y., Afonso J.C., Begg G.C., 2009. The composition and evolution of lithospheric mantle: a reevaluation and its tectonic implications. Journal of Petrology 50 (7), 1185-1204. https://doi.org/10.1093/petrology/ egn033 52. Griffin W.L., Ryan C.G., Kaminsky F.V., O'Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999c. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1-4), 1-35. https://doi.org/10.1016/S0040-1951(99)00156-0 53. Griffin W.L., Shee S.R., Ryan C.G., Win T.T., Wyatt B.A., 1999b. Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology 134 (2-3), 232-250. https://doi.org/10.1007/s004100050481 54. Gudmundsson G., Wood B.J., 1995. Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology 119 (1), 56-67. https://doi.org/10.1007/BF00310717 55. Helmstaedt H., 2009. Crust-mantle coupling revisited: the Archean Slave craton, NWT, Canada. Lithos 112 (Supplement 2), 1055-1068. https://doi.org/10.1016/j.epsl.2011.04.034 56. Herzberg C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology 45 (12), 2507-2530. https://doi.org/10.1093/petrology/egh039 57. Ionov D.A., Doucet L.S., Ashchepkov I.V., 2010. Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East Kimberlite. Journal of Petrology 51 (11), 2177-2210. https://doi.org/10.1093/petrology/egq053 58. Ionov D.A., Doucet L.S., Carlson R.W., Golovin A.V., Korsakov A.V., 2015. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochimica et Cosmochimica Acta 165, 466-483. https://doi.org/10.1016/j.gca.2015.06.035 59. Ionov D.A., Doucet L.S., Xu Y., Golovin A. V., Oleinikov O.B., 2018. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochimica et Cosmochimica Acta 224, 132-153. https://doi.org/ 10.1016/j.gca.2017.12.028 60. Jagoutz E., Lowry D., Mattey D., Kudrjavtseva G., 1994. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochimica et Cosmochimica Acta 58 (23), 5191-5207. https://doi.org/10.1016/0016-7037(94) 90304-2 61. Karato S.I., 2010. Rheology of the Earth's mantle: A historical review. Gondwana Research 18 (1), 17-45. https:// doi.org/10.1016/j.gr.2010.03.004 62. Kopylova M.G., Caro G., 2004. Mantle xenoliths from the Southeastern Slave craton: Evidence for chemical zonation in a thick, cold lithosphere. Journal of Petrology 45 (5), 1045-1067. https://doi.org/10.1093/petrology/egh003 63. Koreshkova M. Yu., Downes H., Nikitina L.P., Vladykin N.V., Larionov A.N., Sergeev S.A., 2009. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambrian Research 168 (3-4), 197-212. https://doi.org/10.1016/j.precamres.2008.09.007 64. Корнилова В.П., Специус З.В., Помазанскией Б.С. Петрографо-минералогические особенности и целесообразность переоценки алмазоносности кимберлитовых трубок Лорик и Светлана (Западно-Укукитское поле, Якутия) // Региональная геология и металлогения. 2016. № 68. C. 92-99 65. Kostrovitsky S.I., Alymova N.V., Yakovlev D.A., Serov I.V., Ivanov A.S., Serov V.P., 2006. Specific features of picroilmenite composition in various diamondiferous fields of the Yakutian province. Doklady Earth Sciences 406 (1), 19-23. https://doi.org/10.1134/S1028334X06010065 66. Kostrovitsky S.I., Morikiyo T., Serov I.V., Yakovlev D.A., Amirzhanov A.A., 2007. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russian Geology and Geophysics 48 (3), 272-290. https:// doi.org/10.1016/j.rgg.2007.02.011 67. Koulakov I., Bushenkova N., 2010. Upper mantle structure beneath the Siberian craton and surrounding areas based on fieldal tomographic inversion of P and PP travel times. Tectonophysics 486 (1-4), 81-100. https://doi.org/ 10.1016/j.tecto.2010.02.011 68. Krogh E.J., 1988. The garnet-clinopyroxene Fe-Mg geothermometer - a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology 99 (1), 44-48. https://doi.org/10.1007/BF00399364 69. Кулигин С.С. Комплекс ксенолитов пироксенитов различных регионов Сибирской платформы: Дис. ... канд. геол.-мин. наук. Новосибирск: ОИГГМ СО РАН, 1997. 190 с 70. Kuskov O.L., Kronrod V.A., Prokof'ev A.A., 2011. Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the kraton and kimberlit superlong seismic profiles. Izvestiya, Physics of the Solid Earth 47 (3), 155-175. https://doi.org/10.1134/S1069351310111011 71. Kuskov O.L., Kronrod V.A., Prokof'ev A.A., Pavlenkova N.I., 2014a. Lithospheric mantle structure of the Siberian craton inferred from the superlong Meteorite and Rift seismic profiles. Russian Geology and Geophysics 55 (7), 892-906. https://doi.org/10.1016/j.rgg.2014.06.008 72. Kuskov O.L., Kronrod V.A., Prokofyev A.A., Pavlenkova N.I., 2014b. Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615-616, 154-166. https://doi.org/10.1016/j.tecto.2014.01.006 73. Лаврентьев Ю.Г., Усова Л.В. Новая версия программы «Карат» для количественного рентгеноспектрального микроанализа // Журнал аналитической химии. 1994. Т. 46. № 5. С. 462-468 74. Лаврентьев Ю.Г., Усова Л.В., Кузнецова А.И., Летов С.В. Рентгеноспектральный квантометрический микроанализ важнейших минералов кимберлитов // Геология и геофизика. 1987. Т. 28. № 5. С. 75-81 75. Лазько Е.Е., Роден М.Ф. Гранатовые перидотиты и пироксениты в субконтинентальной литосфере центральной части Сибирского кратона (ксенолиты из трубки Мир) // Проблемы прогнозирования, поисков и изучения месторождений полезных ископаемых на пороге ХХI века. Воронеж: Изд-во Воронежского государственного университета, 2003. С. 307-318 76. Lazarov M., Brey G.P., Weyer S., 2012. Evolution of the South African mantle - A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: Inter-mineral trace element and isotopic equilibrium. Lithos 154, 193-209. https://doi.org/10.1016/j.lithos.2012.07.013 77. Lee C.T.A., Luffi P., Chin E.J., 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences 39, 59-90. https://doi.org/10.1146/annurev-earth-040610-133505 78. Lehtonen M.L., O'Brien H.E., Peltonen P., Johanson B.S., Pakkanen L.K., 2004. Layered mantle at the Karelian Craton margin: P-T of mantle xenocrysts and xenoliths from the Kaavi-Kuopio kimberlites, Finland. Lithos 77 (1-4), 593-608. https://doi.org/10.1016/j.lithos.2004.04.026 79. Liu J., Rudnick R.L., Walker R.J., Gao S., Wu F.-Y., Piccoli P.M., Yuan H., Xu W.-L., Xu Y.-G., 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica et Cosmochimica Acta 75 (13), 3881-3902. https://doi.org/10.1016/j.lithos.2004.04.026 80. Logvinova A.M., Taylor L.A., Floss C., Sobolev N.V., 2005. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. International Geology Review 47 (12), 1223-1233. https://doi.org/10.2747/0020-6814.47.12.1223 81. Malkovets V.G., Griffin W.L., O'Reilly S.Y., Wood B.J., 2007. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35 (4), 339-342. https://doi.org/10.1130/G23092A1 82. Малыгина Е.В. Минералогия ксенолитов зернистых перидотитов из кимберлитовой трубки Удачная в связи с проблемой состава верхней мантии Сибирской платформы: Дис. ... канд. геол.-мин. наук. Новосибирск: ИГМ СО РАН, 2000. 195 с 83. Manikyamba C., Kerrich R., 2012. Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geoscience Frontiers 3 (3), 225-240. https://doi.org/10.1016/j.gsf.2011.11.009 84. Manning C.E., 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters 223 (1-2), 1-16. https://doi.org/10.1016/j.epsl.2004.04.030 85. McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chemical Geology 120 (3-4), 223-253. https://doi.org/ 10.1016/0009-2541(94)00140-4 86. McGregor I.D., 1974. The system MgO-SiO2-Ah2O3: solubility of Ah2O3 in enstatite for spinel and garnet peridotite compositions. American Mineralogist 59 (11), 110-119 87. McKenzie D., Priestley K., 2008. The influence of lithospheric thickness variations on continental evolution. Lithos 102 (1-2), 1-11. https://doi.org/10.1016/j.lithos.2007.05.005 88. Mei S., Bai W., Hiraga T., Kohlstedt D.L., 2002. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth and Planetary Science Letters 201 (3-4), 491-507. https://doi.org/10.1016/S0012-821X(02)00745-8 89. Misra K.C., Anand M., Taylor L.A., Sobolev N.V., 2004. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contributions to Mineralogy and Petrology 146 (6), 696-714. https://doi.org/10.1016/j.lithos.2004.03.026 90. Nickel K.G., Green D.H., 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters 73 (1), 158-170. https://doi.org/ 10.1016/0012-821X(85)90043-3 91. Nicolas A., Dupuy C., 1984. Origin of ophiolitic and oceanic lherzolites. Tectonophysics 110 (3-4), 177-187. https:// doi.org/10.1016/0040-1951(84)90259-2 92. Nimis P., Kuzmin D.V., Malkovets V., 2016. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. American Mineralogist 101 (10), 2222-2232. https://doi.org/10.2138/ am-2016-5540 93. Nimis P., Taylor W.R., 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology 139 (5), 541-554. https://doi.org/10.1007/s004100000156 94. Nimis P., Zanetti A., Dencker I., Sobolev N.V., 2009. Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): Metasomatic processes, thermobarometry and diamond potential. Lithos 112 (3-4), 397-412. https://doi.org/10.1016/j.lithos.2009.03.038 95. Олейников О.Б. Ксенолиты глубинных серпентинизированных щелочно-ультраосновных пород из кимберлитовой трубки Юбилейная // Отечественная геология. 2000. № 5. С. 74-76 96. O'Neill H.S.C., Pownceby M.I., Wall V.J., 1988. Ilmenite-rutile-iron and ulvospinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvospinel (Fe2TiO4). Geochimica et Cosmochimica Acta 52 (8), 2065-2072. https://doi.org/10.1016/0016-7037(88)90185-8 97. O'Neill H.St.C., Wall V.J., 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's upper mantle. Journal of Petrology 28 (6), 1169-1191. https://doi.org/ 10.1093/petrology/28.6.1169 98. O'Neill H.S.C., Wood B.J., 1979. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contributions to Mineralogy and Petrology 70 (1), 59-70. https://doi.org/10.1007/ BF00371872 99. O'Reilly S.Y., Zhang M., Griffin W.L., Begg G., Hronsky J., 2009. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir" problem? Lithos 112 (Supplement 2), 1043-1054. https://doi.org/ 10.1016/j.lithos.2009.04.028 100. Овчинников Ю.И. Глубинные ксенолиты кимберлитовой трубки Обнаженная и базальтов Минусинской впадины: Дис. ... канд. геол.-мин. наук. Новосибирск: ОИГГМ СО РАН, 1990. 225 с 101. Parkinson I.J., Pearce J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology 39 (9), 1577-1618. https://doi.org/10.1093/petroj/39.9.1577 102. Pavlenkova N.I., 2011. Seismic structure of the upper mantle along the long-range PNE profiles - rheological implication. Tectonophysics 508 (1-4), 85-95. https://doi.org/10.1016/j.tecto.2010.11.007 103. Pearson D.G., 1999. The age of continental roots. In: R.D. van der Hilst, W.F. McDonough (Eds.), Composition, deep structure and evolution of continents. Developments in Geotectonics, vol. 24, p. 171-194. https://doi.org/ 10.1016/S0024-4937(99)00026-2 104. Pearson D.G., Irvine G.J., Carlson R.W., Kopylova M.G., Ionov D.A., 2002. The development of lithospheric keels beneath the earliest continents: time constraints using PGE and Re-Os isotope systematics. In: C.M.R. Fowler, C.J. Ebinger, C.J. Hawkesworth (Eds.), The Early Earth: physical, chemical and biological development. Geological Society, London, Special Publications, vol. 199, p. 65-90. https://doi.org/10.1144/GSL.SP.2002.199.01.04 105. Pearson D.G., Snyder G.A., Shirey S.B., Taylor L.A., Carlson R.W., Sobolev N. V., 1995. Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374 (6524), 711-713. https://doi.org/10.1038/374711a0 106. Perchuk A.L., Safonov O.G., Smit C.A., van Reenen D.D., Zakharov V.S., Gerya T.V., 2018. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust. Tectonophysics 746, 572-586. https://doi.org/10.1016/j.tecto. 2016.11.041 107. Pernet-Fisher J.F., Howarth G.H., Liu Y., Barry P.H., Carmody L., Valley J.W., Bodnar R.J., Spetsius Z.V., Taylor L.A., 2014. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology 167 (3), 981. https://doi.org/10.1007/s00410-014-0981-y 108. Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russian Geology and Geophysics 56 (1-2), 280-295. https://doi.org/10.1016/j.rgg.2015.01.020 109. Pokhilenko N.P., Pearson D.G., Boyd F.R., Sobolev N.V., 1991. Megacrystalline dunites: sources of Siberian diamonds. Carnegie Institute Washington Yearbook 90, 11-18 110. Pokhilenko N.P., Sobolev N.V., Chernyi S.D., Yanygin Yu.T., 2000. Pyropes and chromites from kimberlites in the Nakyn Field (Yakutia) and Snipe Lake District (Slave River Region, Canada): evidence for anomalous structure of the lithosphere. Doklady Earth Sciences 372 (4), 638-642 111. Pokhilenko N.P., Sobolev N.V., Sobolev V.S., Lavrent'ev Yu.G., 1976. Xenolith of diamond-bearing ilmenite-pyrope lherzolite from the Udachnaya pipe (Yakutia). Doklady AN SSSR 231 (2), 438-441 @@Похиленко Н.П., Соболев Н.В., Соболев В.С., Лаврентьев Ю.Г. Ксенолит алмазоносных ильменитовых пироповых лерцолитов из кимберлитовой трубки Удачная // Доклады АН СССР. 1976. Т. 231. № 2. С. 438-441 112. Pollack H.N., Chapman D.S., 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38 (3-4), 279-296. https://doi.org/10.1016/0040-1951(77)90215-3 113. Пономаренко А.И., Соболев Н.В., Похиленко Н.П., Лаврентьев Ю.Г., Соболев В.С. Алмазоносный гроспидит и алмазоносные дистеновые эклогиты из кимберлитовой трубки «Удачная», Якутия // Доклады АН СССР. 1976. Т. 226. № 4. С. 927-930 114. Pouchou J.L., Pichoir F., 1984. A new model for quantitative X-ray microanalysis. Part I: application to the analysis of homogeneous samples. Recherche Aerospatiale 3, 167-192 115. Riches A.J.V., Liu Y., Day J.M.D., Spetsius Z.V., Taylor L.A., 2010. Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120 (3-4), 368-378. https://doi.org/10.1016/ j.lithos.2010.09.006 116. Roden M.F., Patino-Douce A.E., Jagoutz E., Laz'ko E.E., 2006. High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite, Russia. Lithos 90 (1-2), 77-91. https://doi.org/10.1016/j.lithos.2006.01.005 117. Родионов А.С., Похиленко Н.П., Соболев Н.В. Сравнительная характеристика главнейших минералов концентрата двух разновидностей кимберлита трубки Дальняя // Геология и геофизика. 1984. Т. 25. № 5. С. 38-50 118. Rosen O.M., 2003. The Siberian craton: tectonic zonation and stages of evolution. Geotectonics 37 (3), 175-192 119. Rosen O.M., Levskii L.K., Zhuravlev D.Z., Rotman A.Ya., Spetsius Z.V., Makeev A.F., Zinchuk N.N., Manakov A.V., Serenko V.P., 2006. Paleoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigraphy and Geological Correlation 14 (6), 581-601. https://doi.org/10.1134/S0869593806060013 120. Розен О.М., Манаков А.В., Зинчук Н.Н. Сибирский кратон: формирование, алмазоносность. М.: Научный мир, 2006. 212 с 121. Rosen O.M., Serenko V.P., Spetsius Z.V., Manakov A.V., Zinchuk N.N., 2002. Yakutian kimberlite province: position in the structure of the Siberian craton and composition of the upper and lower crust. Geologiya i Geofizika (Russian Geology and Geophysics) 43 (1), 3-26 122. Ryan C.G., Griffin W.L., Pearson N.J., 1996. Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. Journal of Geophysical Research: Solid Earth 101 (B3), 5611-5625. https://doi.org/ 10.1029/95JB03207 123. Santosh M., Maruyama S., Yamamoto S., 2009. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research 15 (3-4), 324-341. https://doi.org/10.1016/j.gr.2008.11.004 124. Секерин А.П., Меньшагин Ю.В., Лащенов В.А. Щелочно-ультраосновные породы и карбонатиты Восточного Саяна // Доклады АН СССР. 1988. T. 299. № 3. С. 711-714 125. Секерин А.П., Меньшагин Ю.В., Лащенов В.А. Докембрийские лампроиты Присаянья // Доклады АН. 1993. T. 329. № 3. С. 328-331 126. Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V., 2015. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Research 28 (1), 106-120. https://doi.org/10.1016/j.gr.2014.03.018 127. Smelov A.P., Andreev A.P., Altukhova Z.A., Babushkina S.A., Bekrenev K.A., Zaitsev A.I., Izbekov E.D., Koroleva O.V., Mishnin V.M., Okrugin A.V., Oleinikov O.B., Surnin A.A., 2010. Kimberlites of the Manchary pipe: a new kimberlite field in Central Yakutia. Russian Geology and Geophysics 51 (1), 121-126. https://doi.org/10.1016/j.rgg.2009.12.012 128. Смелов А.П., Ащепков И.В., Олейников О.Б., Сурнин А.А., Бабушкина С.А., Полуфунтикова Л.И., Королева О.В. Химический состав и Р-Т условия образования барофильных минералов из кимберлитовой трубки Манчары (Центральная Якутия) // Отечественная геология. 2009. № 5. С. 27-31 129. Смелов А.П., Биллер А.Я., Зайцев А.И. Соотношение различных кристалломорфологических типов алмаза в туффитах карнийского яруса северо-восточной части Якутской ким-берлитовой провинции // Отечественная геология. 2011. № 5. C. 50-55 130. Smelov A.P., Kotov A.B., Sal'nikova E.B., Kovach V.P., Beryozkin V.I., Kravchenko A.A., Dobretsov V.N., Velikoslavinskii S.D., Yakovleva S.Z., 2012. Age and duration of the formation of the Billyakh tectonic melange zone, Anabar shield. Petrology 20 (3), 286-300. https://doi.org/10.1134/S0869591112030058 131. Смелов А.П., Ковач В.П., Габышев В.Д. Тектоническое строение и возраст фундамента восточной части Северо-Азиатского кратона // Отечественная геология. 1998. № 6. С. 6-10 132. Smelov A.P., Zaitsev A.I., 2013. The age and localization of kimberlite magmatism in the Yakutian kimberlite province: constraints from isotope geochronology - an overview. In: D.G. Pearson et al. (Eds.), Proceedings of 10th International Kimberlite Conference, vol. 1 (Special Issue of the Journal of the Geological Society of India), p. 225-234. https://doi.org/10.1007/978-81-322-1170-9_14 133. Smith C.B., Pearson D.G., Bulanova G.P., Beard A.D., Carlson R.W., Wittig N., Sims K., Chimuka L., Muchemwa E., 2009. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton. Lithos 112 (Supplement 2), 1120-1132. https://doi.org/10.1016/j.lithos.2009.05.013 134. Snyder D.B., 2008. Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities. Tectonics 27 (4), TC4006. https://doi.org/10.1029/2007TC002132 135. Snyder D.B., Humphreys E., Pearson D.G., 2017. Construction and destruction of some North American cratons. Tectonophysics 694, 464-485. https://doi.org/10.1016/j.tecto.2016.11.032 136. Snyder G.A., Taylor L.A., Crozaz G., Halliday A.N., Beard B.L., Sobolev V.N., Sobolev N.V., 1997. The origins of Yakutian eclogite xenoliths. Journal of Petrology 38 (1), 85-113. https://doi.org/10.1093/petroj/38.1.85 137. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 264 с 138. Sobolev N.V., Lavrent'ev Y.G., Pokhilenko N.P., Usova L.V., 1973. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contributions to Mineralogy and Petrology 40 (1), 39-52. https://doi.org/10.1007/ BF00371762 139. Sobolev N.V., Logvinova A.M., Nikolenko E.I., Lobanov S.S., 2013. Mineralogical criteria for the diamond potential of Upper Triassic placers on the northeastern margin of the Siberian Platform. Russian Geology and Geophysics 54 (8), 903-916. https://doi.org/10.1016/j.rgg.2013.07.010 140. Sobolev N. V., Logvinova A.M., Zedgenizov D.A., Seryotkin Y.V., Yefimova E.S., Floss C., Taylor L.A., 2004. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77 (1-4), 225-242. https://doi.org/10.1016/j.lithos.2004.04.001 141. Соболев Н.В., Похиленко Н.П., Ефимова Э.С. Ксенолиты алмазоносных перидотитов в кимберлитах и проблема происхождения алмазов // Геология и геофизика. 1984. Т. 25. № 12. С. 63-80 142. Sobolev N.V., Pustyntsev V.I., Kuznetsova I.K., Khar'kiv A.D., 1970. New data on the mineralogy of the diamond-bearing eclogites from the "Mir" pipe (Yakutia). International Geology Review 12 (6), 657-659. https://doi.org/10.1080/ 00206817009475272 143. Sobolev N. V., Sobolev V.N., Snyder G.A., Yefimova E.S., Taylor L.A., 1999. Significance of eclogitic and related parageneses of natural diamonds. International Geology Review 41 (2), 129-140. https://doi.org/10.1080/0020681990 9465135 144. Соболев В.С., Соболев Н.В. О хроме и хромсодержащих минералах в глубинных ксенолитах кимберлитовых трубок // Геология рудных месторождений. 1967. № 2. С. 18-37 145. Spetsius Z.V., 2004. Petrology of highly aluminous xenoliths from kimberlites of Yakutia. Lithos 77 (1-4), 525-538. https://doi.org/10.1016/j.lithos.2004.04.021 146. Spetsius Z.V., Belousova E.A., Griffin W.L., O'Reilly S.Y., Pearson N.J., 2002. Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth and Planetary Science Letters 199 (1-2), 111-126. https://doi.org/10.1016/j.lithos.2004.04.021 147. Spetsius Z.V., Serenko V.P., 1990. Composition of the Continental Mantle and Lower Crust beneath the Siberian Platform. Nauka, Moscow, 271 p. @@Специус З.В., Серенко В.П. Состав континентальной мантии и нижней коры под Сибирской платформой. М.: Наука, 1990. 271 с. 148. Spetsius Z.V., Taylor L.A., Valley J.W., Deangelis M.T., Spicuzza M., Ivanov A.S., Banzeruk V.I., 2008. Diamondiferous xenoliths from crustal subduction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia. European Journal of Mineralogy 20 (3), 375-385. https://doi.org/10.1127/0935-1221/2008/0020-1828 149. Stachel T., Viljoen K.S., McDade P., HarrisJ.W., 2004. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton - the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contributions to Mineralogy and Petrology 147 (1), 32-47. https://doi.org/10.1007/s00410-003-0535-1 150. Sun J., Liu C.-Z., Tappe S., Kostrovitsky S.I., Wu F.-Y., Yakovlev D., Yang Y.-H., Yang J.-H., 2014. Repeated kimberlite mag-matism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis. Earth and Planetary Science Letters 404, 283-295. https://doi.org/10.1016/ j.epsl.2014.07.039 151. Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Y., Wu F.-Y., 2018. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology 479, 228-240. https://doi.org/10.1016/j.chemgeo.2018.01.013 152. Suvorov V.D., Mel'nik E.A., Mishen'kina Z.R., Pavlov E.V., Kochnev V.A., 2013. Seismic inhomogeneities in the upper mantle beneath the Siberian craton (Meteorite profile). Russian Geology and Geophysics 54 (9), 1108-1120. https://doi.org/10.1016/j.rgg.2013.07.023 153. Suvorov V.D., Melnik E.A., Thybo H., Perchuć E., Parasotka B.S., 2006. Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite field in Siberia. Tectonophysics 420 (1-2), 49-73. https://doi.org/10.1016/ j.tecto.2006.01.009 154. Суворов В.Д., Юрин Ю.А., Парасотка Б.С. Структура нижней части земной коры и верхов мантии западной части Якутской кимберлитовой провинции (по данным ГСЗ) // Геология и геофизика. 1994. Т. 35. № 11. С. 126-133 155. Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of ultramafic lamprophyres and carbonatites at AillikBay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology 47 (7), 1261-1315. https://doi.org/10.1093/petrology/ egl008 156. Taylor L.A., Snyder G.A., Keller R., Remley D.A., Anand M., Wiesli R., Valley J., Sobolev N.V., 2003. Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contributions to Mineralogy and Petrology 145 (4), 424-443. https://doi.org/10.1007/s00410-003-0465-y 157. Taylor W.R., Kammerman M., Hamilton R., 1998. New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. In: 7th International kimberlite conference. Extended abstracts. Cape Town, p. 891-901 158. Tolstov A.V., Minin V.A., Vasilenko V.B., Kuznetsova L.G., Razumov A.N., 2009. A new body of highly diamondiferous kimberlites in the Nakyn field of the Yakutian kimberlite province. Russian Geology and Geophysics 50 (3), 162-173. https://doi.org/10.1016/j.rgg.2008.09.001 159. Van Hunen J, van den Berg A.P., 2008. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103 (1-2), 217-235. https://doi.org/10.1016/j.lithos.2007.09.016 160. Владимиров Б.М., Волянюк Н.Я., Пономаренко А.И. Глубинные включения из кимберлитов, базальтов и кимберлитоподобных пород. М.: Наука, 1976. 284 с.] 161. Wyllie P.J., Ryabchikov I.D., 2000. Volatile components, magmas and critical fluids in upwelling mantle. Journal of Petrology 41 (7), 1195-1206. https://doi.org/10.1093/petrology/41.7.1195 162. Зайцев А.И., Смелов А.П. Изотопная геохронология пород кимберлитовой формации Якутской провинции. Якутск: Институт геологии алмаза и благородных металлов СО РАН, 2010. 105 с