Инд. авторы: Fomina A.V., Chernykh G.G.
Заглавие: Numerical Modelling of the Dynamics of a Cylindrical Turbulent Patch in a Longitudinal Shear Flow
Библ. ссылка: Fomina A.V., Chernykh G.G. Numerical Modelling of the Dynamics of a Cylindrical Turbulent Patch in a Longitudinal Shear Flow // Mathematical Models and Computer Simulations. - 2019. - Vol.11. - Iss. 5. - P.799-809. - ISSN 2070-0482. - EISSN 2070-0490.
Внешние системы: РИНЦ: 41701590; SCOPUS: 2-s2.0-85073337383;
Реферат: eng: Abstract: Based on a modified two-equation model of turbulence, the numerical model of the dynamics of a cylindrical localized zone of turbulent mixing in a longitudinal uniform shear flow of homogeneous fluid is constructed. The results of the numerical experiments demonstrate significant turbulent energy generation caused by the effect of the shear flow. The question of the similarity of the flow with respect to the shear Froude number is considered. The results of the numerical experiments show the similarity of the flow for large values of this parameter, which correspond to small values of the velocity gradients of the shear flow.
Ключевые слова: Rodi’s algebraic Reynolds stresses model of turbulence; numerical modeling; mathematical model of turbulent patch in a shear flow;
Издано: 2019
Физ. характеристика: с.799-809
Цитирование: 1. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 1: Mechanics of Turbulence (Dover Books on Physics, New York, 2007; Gidrometeoizdat, St. Petersburg, 1992). 2. A. H. Schooley, “Wake collapse in a stratified fluid,” Science (Washington, DC, U.S.) 157 (3787), 421–423 (1967). 3. Yu. N. Vlasov, V. N. Nekrasov, A. M. Trokhan, and Yu. D. Chashechkin, “Development of turbulent mixing in a fluid,” J. Appl. Mech. Tech. Phys. 14, 222–225 (1973). 4. O. F. Vasiliev, B. G. Kuznetsov, Yu. M. Lytkin, and G. G. Chernykh, “Development of the region of a turbulized liquid in a stratified medium,” Fluid Dyn. 9, 368–373 (1974). 5. A. M. Trokhan and Yu. D. Chashechkin, “Generation of internal waves in stratified fluid by an impulse hydrodynamic line source (two-dimensional problem),” in Proceedings of the 7th All-Union Symposium on the Diffraction and Propagation of Waves, Rostov-on-Don, 1977 (USSR Acad. Sci., Moscow, 1977), Vol. 3, p. 186–189. 6. Yu. M. Lytkin and G. G. Chernykh, “Similarity of the flow with respect to the density Froude number and energy balance at the evolution of the turbulent mixing zone in a stratified medium,” in Mathematical Problems of Continuum Mechanics: A Collection of Scientific Works (Inst. Hydrodynamics of the USSR Acad. Sci., Novosibirsk, 1980), No. 47, pp. 70–89 [in Russian]. 7. H. J. S. Fernando, “The growth of a turbulent patch in stratified fluid,” J. Fluid Mech. 190, 55–70 (1988). 8. A. I. Tolstykh, Compact Difference Schemes and Their Applications to Fluid Dynamics Problems (Nauka, Moscow, 1990) [in Russian]. 9. I. P. D. de Silva and H. J. S. Fernando, “Experiments on collapsing turbulent regions in stratified fluids,” J. Fluid Mech. 358, 29–60 (1998). 10. Yu. D. Chashechkin, G. G. Chernykh, and O. F. Voropayeva, “The propagation of a passive admixture from a local instantaneous source in a turbulent mixing zone,” Int. J. Comput. Fluid Dyn. 19, 517–529 (2005). 11. G. G. Chernykh and O. F. Voropayeva, “Numerical modeling of momentumless turbulent wake dynamics in a linearly stratified medium,” Comput. Fluids 28, 281–306 (1999). 12. Pal Amikesh, B. de Stadler Matthew, and S. Sarkar, “The spatial evolution of fluctuations in a self-propelled wake compared to a patch of turbulence,” Phys. Fluids 25, 095106-1–095106-20 (2013). 13. M. C. Jones and E. G. Paterson, “Influence of propulsation type on the stratified near wake of an axisymmetric self-propelled body,” J. Marine Sci. Eng. 6, 46 (2018). 10.3390/jmse6020046 14. H. J. S. Fernando, “Turbulent patches in a stratified shear flow,” Phys. Fluids 15, 3164–3169 (2003). 15. S. N. Yakovenko, T. G. Thomas, and I. P. Castro, “A turbulent patch arising from a breaking internal wave,” J. Fluid Mech. 677, 103–133 (2011). 16. G. G. Chernykh and O. F. Voropaeva, “Dynamics of a momentumless turbulent wake in a shear flow,” J. Eng. Thermophys. 24, 12–21 (2015). 17. O. F. Voropaeva and G. G. Chernykh, “The dynamics of local zones of turbulized fluid under the background disturbances of hydrophysical fields,” Fundam. Prikl. Gidrofiz. 8 (4), 12–17 (2015). 18. O. F. Voropaeva and G. G. Chernykh, “Dynamics of momentumless turbulent wake in a shear flow of a linearly stratified medium,” Thermophys. Aeromech. 23, 59–68 (2016). 19. M. M. Gibson and B. E. Launder, “On the calculation of horizontal turbulent free shear flows under gravitational influence,” J. Heat Transf. Trans. ASME, No. 98C, 81–87 (1976). 20. W. Rodi, Turbulence Models and their Application in Hydraulics: A State of the Art Review (Univ. of Karlsruhe, 1980). 21. J. T. Lin and Y. H. Pao, “Wakes in stratified fluids,” Ann. Rev. Fluid Mech. 11, 317–338 (1979). 22. S. Hassid, “Collapse of turbulent wakes in stable stratified media,” J. Hydronaut. 14, 25–32 (1980). 23. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1972) [in Russian]. 24. O. V. Kaptsov, A. V. Fomina, G. G. Chernykh, and A. V. Schmidt, “Self-similar decay of the momentumless turbulent wake in a passive stratified medium,” Mat. Model. 27 (1), 84–98 (2015). 25. N. N. Fedorova and G. G. Chernykh, “On numerical simulation of a momentumless turbulent wake behind a sphere,” Model. Mekh. 6, 129–149 (1992). 26. N. N. Fedorova and G. G. Chernykh, “On numerical simulation of plane turbulent wakes,” Mat. Model. 6 (10), 24–34 (1994). 27. G. G. Chernykh, A. V. Fomina, and N. P. Moshkin, “Numerical simulation of dynamics of turbulent wakes behind towed bodies in linearly stratified media,” J. Eng. Thermophys. 18, 279–305 (2009).