Цитирование: | 1. Imamura, F. Simulation of wave-packet propagation along sloping beach by TUNAMI-code. In Long-Wave Runup Models; Yeh, H., Liu, P.L.-F., Synolakis, C.E., Eds.; World Scientific: Singapore, 1996; pp. 231-241.
2. Titov, V.V.; González, F.I. Implementation and Testing of the Method of Splitting Tsunami (MOST) Model; Pacific Marine Environmental Laboratory: Seattle, WA, USA, 1997.
3. Titov, V.V.; Synolakis, C.E. Numerical modeling of 3-D long wave runup using VTCS-3. In Long Wave Runup Models; Yeh, H., Liu, P.L.-F., Synolakis, C.E., Eds.; World Scientific: Singapore, 1996; pp. 242-248.
4. Wang, X.; Powel, W.L. COMCOT: A Tsunami Generation, Propagation and Run-Up Model; GNS Science Report 2011/43; GNS Science: Lower Hutt, New Zealand, 2011; p. 121.
5. Shokin, Y.I.; Babailov, V.V.; Beisel, S.A.; Chubarov, L.B.; Eletsky, S.V.; Fedotova, Z.I.; Gusiakov, V.K. Mathematical Modeling in Application to Regional Tsunami Warning Systems Operations. In Computational Science and High Performance Computing III, Proceedings of the 3rd Russian-German Advanced Research Workshop, Novosibirsk, Russia, 23-27 July 2007; Springer: Berlin/Heidelberg, Germany, 2008; pp. 52-68.
6. Synolakis, C.E.; Bernard, E.N. Tsunami science before and beyond Boxing Day 2004. Phil. Trans. R. Soc. A 2006, 364, 2231-2265.
7. Dalrymple, R.A.; Grilli, S.T.; Kirby, J.T. Tsunamis and challenges for accurate modeling. Oceanography 2006, 19, 142-151.
8. Grilli, S.T.; Ioualalen, M.; Asavanant, J.; Shi, F.; Kirby, J.T.; Watts, P. Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami. J. Waterw. Port Coast. Ocean Eng. 2007, 133, 414-428.
9. Murty, T.S.; Rao, A.D.; Nirupama, N.; Nistor, I. Numerical modelling concepts for tsunami warning systems. Curr. Sci. 2006, 90, 1073-1081.
10. Mirchina, N.R.; Pelinovsky, E.N. Nonlinear and dispersive effects for tsunami waves in the open ocean. Int. J. Tsunami Soc. 1982, 2, 1073-1081.
11. Dao, M.H.; Tkalich, P. Tsunami propagation modelling—A sensitivity study. Nat. Hazards Earth Syst. Sci. 2007, 7, 741-754.
12. Løvholt, F.; Pedersen, G.; Gisler, G. Oceanic propagation of a potential tsunami from the La Palma Island. J. Geophys. Res. 2008, 113, C09026.
13. Lovholt, F.; Pedersen, G.; Glimsdal, S. Coupling of Dispersive Tsunami Propagation and Shallow Water Coastal Response. Open Oceanogr. J. 2010, 4, 71-82.
14. Peregrine, D.H. Long waves on a beach. J. Fluid Mech. 1967, 27, 815-827.
15. Glimsdal, S.; Pedersen, G.K.; Harbitz, C.B.; Løvholt, F. Dispersion of tsunamis: Does it really matter? Natl. Hazards Earth Syst. Sci. 2013, 13, 1507-1526.
16. Kirby, J.T.; Shi, F.; Tehranirad, B.; Harris, J.C.; Grilli, S.T. Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Model. 2013, 62, 39-55.
17. Khakimzyanov, G.S.; Dutykh, D.; Fedotova, Z.I. Dispersive shallow water wave modelling. Part III: Model derivation on a globally spherical geometry. Commun. Comput. Phys. 2018, 23, 315-360.
18. Khakimzyanov, G.S.; Dutykh, D.; Gusev, O. Dispersive shallow water wave modelling. Part IV: Numerical simulation on a globally spherical geometry. Commun. Comput. Phys. 2018, 23, 361-407.
19. Michalopoulos, P.G.; Yi, P.; Lyrintzis, A.S. Continuum modelling of traffic dynamics for congested freeways. Transp. Res. Part B Methodol. 1993, 27, 315-332.
20. Dutykh, D.; Mitsotakis, D. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discret. Contin. Dyn. Syst. Ser. B 2010, 13, 799-818.
21. Whitham, G.B. Linear and Nonlinear Waves; John Wiley & Sons Inc.: New York, NY, USA, 1999.
22. Godunov, S.K. A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 1959, 47, 271-290.
23. Godunov, S.K. Reminiscences about Difference Schemes. J. Comput. Phys. 1999, 153, 6-25.
24. Roe, P.L. Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 1981, 43, 357-372.
25. Fuhrmann, J.; Ohlberger, M.; Rohde, C. Finite Volumes for Complex Applications VII—Elliptic, Parabolic and Hyperbolic Problems; Springer: Berlin, Germany, 2014.
26. Babuska, I.; Henshaw, W.D.; Oliger, J.E.; Flaherty, J.E.; Hopcroft, J.E.; Tezduyar, T. (Eds.) Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations; The IMA Volumes in Mathematics and Its Applications; Springer: New York, NY, USA, 1995; Volume 75.
27. Babuska, I.; Suri, M. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties. SIAM Rev. 1994, 36, 578-632.
28. Houston, P.; Süli, E. hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems. SIAM J. Sci. Comput. 2001, 23, 1226-1252.
29. Arvanitis, C.; Katsaounis, T.; Makridakis, C. Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws. ESAIM Math. Model. Numer. Anal. 2010, 35, 17-33.
30. Berger, M.J.; Oliger, J. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys. 1984, 53, 484-512.
31. Berger, M.J.; Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys. 1989, 82, 64-84.
32. George, D.L.; Leveque, R.J. Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Sci. Tsunami Hazards 2006, 24, 319.
33. Popinet, S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comp. Phys. 2003, 190, 572-600.
34. Tang, H.; Tang, T. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 2003, 41, 487-515.
35. Arvanitis, C.; Delis, A.I. Behavior of Finite Volume Schemes for Hyperbolic Conservation Laws on Adaptive Redistributed Spatial Grids. SIAM J. Sci. Comput. 2006, 28, 1927-1956.
36. Degtyarev, L.M.; Drozdov, V.V.; Ivanova, T.S. The method of adaptive grids for the solution of singularly perturbed one dimensional boundary value problems. Differ. Uravn. 1987, 23, 1160-1169.
37. Degtyarev, L.M.; Ivanova, T.S. The adaptive-grid method in one-dimensional nonstationary convection-diffusion problems. Differ. Uravn. 1993, 29, 1179-1192.
38. Shokin, Y.I.; Urusov, A.I. On the construction of adaptive algorithms for unsteady problems of gas dynamics in arbitrary coordinate systems. In Eighth International Conference on Numerical Methods in Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1982; pp. 481-486.
39. Huang, W.; Ren, Y.; Russell, R.D. Moving Mesh Methods Based on Moving Mesh Partial Differential Equations. J. Comp. Phys. 1994, 113, 279-290.
40. Gasparin, S.; Berger, J.; Dutykh, D.; Mendes, N. An innovative method to determine optimum insulation thickness based on non-uniform adaptive moving grid. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 173.
41. Huang, W.; Russell, R.D. Adaptive Moving Mesh Methods; Applied Mathematical Sciences; Springer: New York, NY, USA, 2011.
42. Liseikin, V.D. Grid Generation Methods, 2nd ed.; Scientific Computation; Springer: Dordrecht, The Netherlands, 2010.
43. Godunov, S.K.; Zabrodin, A.; Ivanov, M.Y.; Kraiko, A.N.; Prokopov, G.P. Numerical Solution of Multidimensional Problems of Gas Dynamics; Nauka: Moscow, Russia, 1976.
44. Liseikin, V.D. The construction of structured adaptive grids—A review. Comp. Math. Math. Phys. 1996, 36, 1-32.
45. Khakimzyanov, G.; Dutykh, D. On supraconvergence phenomenon for second order centered finite differences on non-uniform grids. J. Comp. Appl. Math. 2017, 326, 1-14.
46. Khakimzyanov, G.S.; Dutykh, D.; Gusev, O. Dispersive shallow water wave modelling. Part II: Numerical modelling on a globally flat space. Commun. Comput. Phys. 2018, 23, 30-92.
47. Sudobicher, V.G.; Shugrin, S.M. Flow along a dry channel. Izv. Akad. Nauk SSSR 1968, 13, 116-122.
48. Alalykin, G.B.; Godunov, S.K.; Kireyeva, L.L.; Pliner, L.A. Solution of One-Dimensional Problems in Gas Dynamics on Moving Grids; Nauka: Moscow, Russia, 1970.
49. Serezhnikova, T.I.; Sidorov, A.F.; Ushakova, O.V. On one method of construction of optimal curvilinear grids and its applications. Russ. J. Numer. Anal. Math. Model. 1989, 4, 137-156.
50. Shokin, Y.I.; Yanenko, N.N. Method of Differential Approximation: Application to Gas Dynamics; Nauka: Novosibirsk, Russia, 1985.
51. Darmaev, L.M.; Liseikin, V.D. A method of construction of multidimensional adaptive grids. Model. Mech. 1987, 1, 49-58.
52. Azarenok, B.N.; Ivanenko, S.A.; Tang, T. Adaptive Mesh Redistibution Method Based on Godunov's Scheme. Commun. Math. Sci. 2003, 1, 152-179.
53. Beckett, G.; Mackenzie, J.A.; Ramage, A.; Sloan, D.M. Computational Solution of Two-Dimensional Unsteady PDEs Using Moving Mesh Methods. J. Comp. Phys. 2002, 182, 478-495.
54. Cao, W.; Huang, W.; Russell, R.D. A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation. SIAM J. Sci. Comput. 1999, 20, 1978-1994.
55. Prokopov, G.P. About organization of comparison of algorithms and programs for 2D regular difference mesh construction. Vopr. At. Nauk. Tekh. Ser. Mat. Model. Fiz. Prozess. 1989, 3, 98-108.
56. Budd, C.J.; Huang, W.; Russell, R.D. Adaptivity with moving grids. Acta Numer. 2009, 18, 111-241.
57. Bona, J.; Varlamov, V. Wave generation by a moving boundary. Nonlinear Partial Differ. Equ. Relat. Anal. 2005, 371, 41-71.
58. Khakimzyanov, G.S.; Dutykh, D. Numerical Modelling of Surface Water Wave Interaction with a Moving Wall. Commun. Comput. Phys. 2018, 23, 1289-1354.
59. Knobloch, E. and Krechetnikov, R. Problems on Time-Varying Domains: Formulation, Dynamics, and Challenges. Acta Appl. Math. 2015, 137, 123-157.
60. MacCormack, R.W. The effect of viscosity in hypervelocity impact cratering. AIAA Pap. 1969.
61. Chhay, M.; Hoarau, E.; Hamdouni, A.; Sagaut, P. Comparison of some Lie-symmetry-based integrators. J. Comp. Phys. 2011, 230, 2174-2188.
62. Dorodnitsyn, V.A. Finite Difference Models Entirely Inheriting Continuous Symmetry of Original Differential Equations. Int. J. Mod. Phys. C 1994, 5, 723-734.
63. Huang, W.; Russell, R.D. Adaptive mesh movement—The MMPDE approach and its applications. J. Comp. Appl. Math. 2001, 128, 383-398.
64. Lax, P.; Wendroff, B. Systems of conservation laws. Commun. Pure Appl. Math. 1960, 13, 217-237.
65. Courant, R.; Isaacson, E.; Rees, M. On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math. 1952, 5, 243-255.
66. Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32-74.
67. Breuss, M. About the Lax-Friedrichs scheme for the numerical approximation of hyperbolic conservation laws. PAMM 2004, 4, 636-637.
68. Shokin, Y.I.; Sergeeva, Y.V.; Khakimzyanov, G.S. Construction of monotonic schemes by the differential approximation method. Russ. J. Numer. Anal. Math. Model. 2005, 20, 463-481.
69. LeVeque, R.J. Numerical Methods for Conservation Laws, 2nd ed.; Birkhäuser: Basel, Switzerland, 1992.
70. Rozhdestvenskiy, B.L.; Yanenko, N.N. Systems of Quasilinear Equations and Their Application to Gas Dynamics; Nauka: Moscow, Russia, 1978.
71. Thomas, P.D.; Lombart, C.K. Geometric conservation law and its application to flow computations on moving grid. AIAA J. 1979, 17, 1030-1037.
72. Budd, C.J.; Williams, J.F. Moving Mesh Generation Using the Parabolic Monge-Ampère Equation. SIAM J. Sci. Comput. 2009, 31, 3438-3465.
73. Stockie, J.M.; Mackenzie, J.A.; Russell, R.D. A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comput. 2001, 22, 1791-1813.
74. Fedorenko, R.P. Introduction to Computational Physics; MIPT Press: Moscow, Russia, 1994.
75. Dar'in, N.A.; Mazhukin, V.I.; Samarskii, A.A. A finite-difference method for solving the equations of gas dynamics using adaptive nets which are dynamically associated with the solution. USSR Comput. Math. Math. Phys. 1988, 28, 164-174.
76. Dorfi, E.A.; Drury, L.O. Simple adaptive grids for 1-D initial value problems. J. Comp. Phys. 1987, 69, 175-195.
77. Zegeling, P.A.; Blom, J.G. An evaluation of the gradient-weighted moving-finite-element method in one space dimension. J. Comp. Phys. 1992, 103, 422-441.
78. Zegeling, P.A.; Verwer, J.G.; Van Eijkeren, J.C.H. Application of a moving grid method to a class of 1D brine transport problems in porous media. Int. J. Num. Meth. Fluids 1992, 15, 175-191.
79. Coyle, J.M.; Flaherty, J.E.; Ludwig, R. On the stability of mesh equidistribution strategies for time-dependent partial differential equations. J. Comp. Phys. 1986, 62, 26-39.
80. Daripa, P. Iterative schemes and algorithms for adaptive grid generation in one dimension. J. Comp. Phys. 1992, 100, 284-293.
81. Asselin, R. Frequency filter for time integrations. Mon. Weather Rev. 1972, 100, 487-490.
82. Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171-199.
83. Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 1983, 49, 357-393.
84. Stoker, J.J. Water Waves: The Mathematical Theory with Applications; Interscience: New York, NY, USA, 1957.
85. Krejic, N.; Krunic, T.; Nedeljkov, M. Numerical verification of delta shock waves for pressureless gas dynamics. J. Math. Anal. Appl. 2008, 345, 243-257.
86. van Dam, A.; Zegeling, P.A. A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comp. Phys. 2006, 216, 526-546.
87. Barakhnin, V.B.; Borodkin, N.V. The second order approximation TVD scheme on moving adaptive grids for hyperbolic systems. Sib. Zhurnal Vychisl. Mat. 2000, 3, 109-121.
88. Gosse, L. Computing Qualitatively Correct Approximations of Balance Laws: Exponential-Fit, Well-Balanced and Asymptotic-Preserving, 1st ed.; SIMAI Springer Series; Springer: Milan, Italy, 2013.
89. Voltsinger, N.E.; Pelinovsky, E.N.; Klevannyi, K.A. Long Wave Dynamics of Coastal Regions; Gidrometeoizdat: Leningrad, Russia, 1989.
90. Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2009.
91. Khakimzyanov, G.S.; Shokina, N.Y.; Dutykh, D.; Mitsotakis, D. A new run-up algorithm based on local high-order analytic expansions. J. Comp. Appl. Math. 2016, 298, 82-96.
92. Dutykh, D.; Clamond, D.; Milewski, P.; Mitsotakis, D. Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations. Eur. J. Appl. Math. 2013, 24, 761-787.
93. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations: Nonstiff Problems; Springer: Berlin, Germany, 2009.
94. Dutykh, D.; Pelinovsky, E. Numerical simulation of a solitonic gas in KdV and KdV-BBM equations. Phys. Lett. A 2014, 378, 3102-3110.
|