Инд. авторы: Khakimzyanov G., Dutykh D., Mitsotakis D., Shokina N.Y.
Заглавие: Numerical Simulation of Conservation Laws with Moving Grid Nodes: Application to Tsunami Wave Modelling
Библ. ссылка: Khakimzyanov G., Dutykh D., Mitsotakis D., Shokina N.Y. Numerical Simulation of Conservation Laws with Moving Grid Nodes: Application to Tsunami Wave Modelling // Geosciences (Switzerland). - 2019. - Vol.9. - Iss. 5. - Art.197. - EISSN 2076-3263.
Внешние системы: DOI: 10.3390/geosciences9050197; РИНЦ: 41701014; SCOPUS: 2-s2.0-85067599850; WoS: 000470966100006;
Реферат: eng: In the present article, we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with an appropriate predictor-corrector method to achieve higher resolutions. The underlying finite volume scheme is conservative, and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed; thus, unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according to the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.
Ключевые слова: GENERATION; CONSTRUCTION; EQUATIONS; SCHEMES; FINITE-ELEMENT-METHOD; DISPERSION; DYNAMICS; conservation laws; finite volumes; conservative finite differences; moving grids; adaptivity; advection; shallow water equations; wave run-up; ADAPTIVE MESH REFINEMENT; GAS; VOLUME;
Издано: 2019
Физ. характеристика: 197
Цитирование: 1. Imamura, F. Simulation of wave-packet propagation along sloping beach by TUNAMI-code. In Long-Wave Runup Models; Yeh, H., Liu, P.L.-F., Synolakis, C.E., Eds.; World Scientific: Singapore, 1996; pp. 231-241. 2. Titov, V.V.; González, F.I. Implementation and Testing of the Method of Splitting Tsunami (MOST) Model; Pacific Marine Environmental Laboratory: Seattle, WA, USA, 1997. 3. Titov, V.V.; Synolakis, C.E. Numerical modeling of 3-D long wave runup using VTCS-3. In Long Wave Runup Models; Yeh, H., Liu, P.L.-F., Synolakis, C.E., Eds.; World Scientific: Singapore, 1996; pp. 242-248. 4. Wang, X.; Powel, W.L. COMCOT: A Tsunami Generation, Propagation and Run-Up Model; GNS Science Report 2011/43; GNS Science: Lower Hutt, New Zealand, 2011; p. 121. 5. Shokin, Y.I.; Babailov, V.V.; Beisel, S.A.; Chubarov, L.B.; Eletsky, S.V.; Fedotova, Z.I.; Gusiakov, V.K. Mathematical Modeling in Application to Regional Tsunami Warning Systems Operations. In Computational Science and High Performance Computing III, Proceedings of the 3rd Russian-German Advanced Research Workshop, Novosibirsk, Russia, 23-27 July 2007; Springer: Berlin/Heidelberg, Germany, 2008; pp. 52-68. 6. Synolakis, C.E.; Bernard, E.N. Tsunami science before and beyond Boxing Day 2004. Phil. Trans. R. Soc. A 2006, 364, 2231-2265. 7. Dalrymple, R.A.; Grilli, S.T.; Kirby, J.T. Tsunamis and challenges for accurate modeling. Oceanography 2006, 19, 142-151. 8. Grilli, S.T.; Ioualalen, M.; Asavanant, J.; Shi, F.; Kirby, J.T.; Watts, P. Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami. J. Waterw. Port Coast. Ocean Eng. 2007, 133, 414-428. 9. Murty, T.S.; Rao, A.D.; Nirupama, N.; Nistor, I. Numerical modelling concepts for tsunami warning systems. Curr. Sci. 2006, 90, 1073-1081. 10. Mirchina, N.R.; Pelinovsky, E.N. Nonlinear and dispersive effects for tsunami waves in the open ocean. Int. J. Tsunami Soc. 1982, 2, 1073-1081. 11. Dao, M.H.; Tkalich, P. Tsunami propagation modelling—A sensitivity study. Nat. Hazards Earth Syst. Sci. 2007, 7, 741-754. 12. Løvholt, F.; Pedersen, G.; Gisler, G. Oceanic propagation of a potential tsunami from the La Palma Island. J. Geophys. Res. 2008, 113, C09026. 13. Lovholt, F.; Pedersen, G.; Glimsdal, S. Coupling of Dispersive Tsunami Propagation and Shallow Water Coastal Response. Open Oceanogr. J. 2010, 4, 71-82. 14. Peregrine, D.H. Long waves on a beach. J. Fluid Mech. 1967, 27, 815-827. 15. Glimsdal, S.; Pedersen, G.K.; Harbitz, C.B.; Løvholt, F. Dispersion of tsunamis: Does it really matter? Natl. Hazards Earth Syst. Sci. 2013, 13, 1507-1526. 16. Kirby, J.T.; Shi, F.; Tehranirad, B.; Harris, J.C.; Grilli, S.T. Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Model. 2013, 62, 39-55. 17. Khakimzyanov, G.S.; Dutykh, D.; Fedotova, Z.I. Dispersive shallow water wave modelling. Part III: Model derivation on a globally spherical geometry. Commun. Comput. Phys. 2018, 23, 315-360. 18. Khakimzyanov, G.S.; Dutykh, D.; Gusev, O. Dispersive shallow water wave modelling. Part IV: Numerical simulation on a globally spherical geometry. Commun. Comput. Phys. 2018, 23, 361-407. 19. Michalopoulos, P.G.; Yi, P.; Lyrintzis, A.S. Continuum modelling of traffic dynamics for congested freeways. Transp. Res. Part B Methodol. 1993, 27, 315-332. 20. Dutykh, D.; Mitsotakis, D. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discret. Contin. Dyn. Syst. Ser. B 2010, 13, 799-818. 21. Whitham, G.B. Linear and Nonlinear Waves; John Wiley & Sons Inc.: New York, NY, USA, 1999. 22. Godunov, S.K. A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 1959, 47, 271-290. 23. Godunov, S.K. Reminiscences about Difference Schemes. J. Comput. Phys. 1999, 153, 6-25. 24. Roe, P.L. Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 1981, 43, 357-372. 25. Fuhrmann, J.; Ohlberger, M.; Rohde, C. Finite Volumes for Complex Applications VII—Elliptic, Parabolic and Hyperbolic Problems; Springer: Berlin, Germany, 2014. 26. Babuska, I.; Henshaw, W.D.; Oliger, J.E.; Flaherty, J.E.; Hopcroft, J.E.; Tezduyar, T. (Eds.) Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations; The IMA Volumes in Mathematics and Its Applications; Springer: New York, NY, USA, 1995; Volume 75. 27. Babuska, I.; Suri, M. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties. SIAM Rev. 1994, 36, 578-632. 28. Houston, P.; Süli, E. hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems. SIAM J. Sci. Comput. 2001, 23, 1226-1252. 29. Arvanitis, C.; Katsaounis, T.; Makridakis, C. Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws. ESAIM Math. Model. Numer. Anal. 2010, 35, 17-33. 30. Berger, M.J.; Oliger, J. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys. 1984, 53, 484-512. 31. Berger, M.J.; Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys. 1989, 82, 64-84. 32. George, D.L.; Leveque, R.J. Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Sci. Tsunami Hazards 2006, 24, 319. 33. Popinet, S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comp. Phys. 2003, 190, 572-600. 34. Tang, H.; Tang, T. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 2003, 41, 487-515. 35. Arvanitis, C.; Delis, A.I. Behavior of Finite Volume Schemes for Hyperbolic Conservation Laws on Adaptive Redistributed Spatial Grids. SIAM J. Sci. Comput. 2006, 28, 1927-1956. 36. Degtyarev, L.M.; Drozdov, V.V.; Ivanova, T.S. The method of adaptive grids for the solution of singularly perturbed one dimensional boundary value problems. Differ. Uravn. 1987, 23, 1160-1169. 37. Degtyarev, L.M.; Ivanova, T.S. The adaptive-grid method in one-dimensional nonstationary convection-diffusion problems. Differ. Uravn. 1993, 29, 1179-1192. 38. Shokin, Y.I.; Urusov, A.I. On the construction of adaptive algorithms for unsteady problems of gas dynamics in arbitrary coordinate systems. In Eighth International Conference on Numerical Methods in Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1982; pp. 481-486. 39. Huang, W.; Ren, Y.; Russell, R.D. Moving Mesh Methods Based on Moving Mesh Partial Differential Equations. J. Comp. Phys. 1994, 113, 279-290. 40. Gasparin, S.; Berger, J.; Dutykh, D.; Mendes, N. An innovative method to determine optimum insulation thickness based on non-uniform adaptive moving grid. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 173. 41. Huang, W.; Russell, R.D. Adaptive Moving Mesh Methods; Applied Mathematical Sciences; Springer: New York, NY, USA, 2011. 42. Liseikin, V.D. Grid Generation Methods, 2nd ed.; Scientific Computation; Springer: Dordrecht, The Netherlands, 2010. 43. Godunov, S.K.; Zabrodin, A.; Ivanov, M.Y.; Kraiko, A.N.; Prokopov, G.P. Numerical Solution of Multidimensional Problems of Gas Dynamics; Nauka: Moscow, Russia, 1976. 44. Liseikin, V.D. The construction of structured adaptive grids—A review. Comp. Math. Math. Phys. 1996, 36, 1-32. 45. Khakimzyanov, G.; Dutykh, D. On supraconvergence phenomenon for second order centered finite differences on non-uniform grids. J. Comp. Appl. Math. 2017, 326, 1-14. 46. Khakimzyanov, G.S.; Dutykh, D.; Gusev, O. Dispersive shallow water wave modelling. Part II: Numerical modelling on a globally flat space. Commun. Comput. Phys. 2018, 23, 30-92. 47. Sudobicher, V.G.; Shugrin, S.M. Flow along a dry channel. Izv. Akad. Nauk SSSR 1968, 13, 116-122. 48. Alalykin, G.B.; Godunov, S.K.; Kireyeva, L.L.; Pliner, L.A. Solution of One-Dimensional Problems in Gas Dynamics on Moving Grids; Nauka: Moscow, Russia, 1970. 49. Serezhnikova, T.I.; Sidorov, A.F.; Ushakova, O.V. On one method of construction of optimal curvilinear grids and its applications. Russ. J. Numer. Anal. Math. Model. 1989, 4, 137-156. 50. Shokin, Y.I.; Yanenko, N.N. Method of Differential Approximation: Application to Gas Dynamics; Nauka: Novosibirsk, Russia, 1985. 51. Darmaev, L.M.; Liseikin, V.D. A method of construction of multidimensional adaptive grids. Model. Mech. 1987, 1, 49-58. 52. Azarenok, B.N.; Ivanenko, S.A.; Tang, T. Adaptive Mesh Redistibution Method Based on Godunov's Scheme. Commun. Math. Sci. 2003, 1, 152-179. 53. Beckett, G.; Mackenzie, J.A.; Ramage, A.; Sloan, D.M. Computational Solution of Two-Dimensional Unsteady PDEs Using Moving Mesh Methods. J. Comp. Phys. 2002, 182, 478-495. 54. Cao, W.; Huang, W.; Russell, R.D. A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation. SIAM J. Sci. Comput. 1999, 20, 1978-1994. 55. Prokopov, G.P. About organization of comparison of algorithms and programs for 2D regular difference mesh construction. Vopr. At. Nauk. Tekh. Ser. Mat. Model. Fiz. Prozess. 1989, 3, 98-108. 56. Budd, C.J.; Huang, W.; Russell, R.D. Adaptivity with moving grids. Acta Numer. 2009, 18, 111-241. 57. Bona, J.; Varlamov, V. Wave generation by a moving boundary. Nonlinear Partial Differ. Equ. Relat. Anal. 2005, 371, 41-71. 58. Khakimzyanov, G.S.; Dutykh, D. Numerical Modelling of Surface Water Wave Interaction with a Moving Wall. Commun. Comput. Phys. 2018, 23, 1289-1354. 59. Knobloch, E. and Krechetnikov, R. Problems on Time-Varying Domains: Formulation, Dynamics, and Challenges. Acta Appl. Math. 2015, 137, 123-157. 60. MacCormack, R.W. The effect of viscosity in hypervelocity impact cratering. AIAA Pap. 1969. 61. Chhay, M.; Hoarau, E.; Hamdouni, A.; Sagaut, P. Comparison of some Lie-symmetry-based integrators. J. Comp. Phys. 2011, 230, 2174-2188. 62. Dorodnitsyn, V.A. Finite Difference Models Entirely Inheriting Continuous Symmetry of Original Differential Equations. Int. J. Mod. Phys. C 1994, 5, 723-734. 63. Huang, W.; Russell, R.D. Adaptive mesh movement—The MMPDE approach and its applications. J. Comp. Appl. Math. 2001, 128, 383-398. 64. Lax, P.; Wendroff, B. Systems of conservation laws. Commun. Pure Appl. Math. 1960, 13, 217-237. 65. Courant, R.; Isaacson, E.; Rees, M. On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math. 1952, 5, 243-255. 66. Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32-74. 67. Breuss, M. About the Lax-Friedrichs scheme for the numerical approximation of hyperbolic conservation laws. PAMM 2004, 4, 636-637. 68. Shokin, Y.I.; Sergeeva, Y.V.; Khakimzyanov, G.S. Construction of monotonic schemes by the differential approximation method. Russ. J. Numer. Anal. Math. Model. 2005, 20, 463-481. 69. LeVeque, R.J. Numerical Methods for Conservation Laws, 2nd ed.; Birkhäuser: Basel, Switzerland, 1992. 70. Rozhdestvenskiy, B.L.; Yanenko, N.N. Systems of Quasilinear Equations and Their Application to Gas Dynamics; Nauka: Moscow, Russia, 1978. 71. Thomas, P.D.; Lombart, C.K. Geometric conservation law and its application to flow computations on moving grid. AIAA J. 1979, 17, 1030-1037. 72. Budd, C.J.; Williams, J.F. Moving Mesh Generation Using the Parabolic Monge-Ampère Equation. SIAM J. Sci. Comput. 2009, 31, 3438-3465. 73. Stockie, J.M.; Mackenzie, J.A.; Russell, R.D. A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comput. 2001, 22, 1791-1813. 74. Fedorenko, R.P. Introduction to Computational Physics; MIPT Press: Moscow, Russia, 1994. 75. Dar'in, N.A.; Mazhukin, V.I.; Samarskii, A.A. A finite-difference method for solving the equations of gas dynamics using adaptive nets which are dynamically associated with the solution. USSR Comput. Math. Math. Phys. 1988, 28, 164-174. 76. Dorfi, E.A.; Drury, L.O. Simple adaptive grids for 1-D initial value problems. J. Comp. Phys. 1987, 69, 175-195. 77. Zegeling, P.A.; Blom, J.G. An evaluation of the gradient-weighted moving-finite-element method in one space dimension. J. Comp. Phys. 1992, 103, 422-441. 78. Zegeling, P.A.; Verwer, J.G.; Van Eijkeren, J.C.H. Application of a moving grid method to a class of 1D brine transport problems in porous media. Int. J. Num. Meth. Fluids 1992, 15, 175-191. 79. Coyle, J.M.; Flaherty, J.E.; Ludwig, R. On the stability of mesh equidistribution strategies for time-dependent partial differential equations. J. Comp. Phys. 1986, 62, 26-39. 80. Daripa, P. Iterative schemes and algorithms for adaptive grid generation in one dimension. J. Comp. Phys. 1992, 100, 284-293. 81. Asselin, R. Frequency filter for time integrations. Mon. Weather Rev. 1972, 100, 487-490. 82. Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171-199. 83. Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 1983, 49, 357-393. 84. Stoker, J.J. Water Waves: The Mathematical Theory with Applications; Interscience: New York, NY, USA, 1957. 85. Krejic, N.; Krunic, T.; Nedeljkov, M. Numerical verification of delta shock waves for pressureless gas dynamics. J. Math. Anal. Appl. 2008, 345, 243-257. 86. van Dam, A.; Zegeling, P.A. A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comp. Phys. 2006, 216, 526-546. 87. Barakhnin, V.B.; Borodkin, N.V. The second order approximation TVD scheme on moving adaptive grids for hyperbolic systems. Sib. Zhurnal Vychisl. Mat. 2000, 3, 109-121. 88. Gosse, L. Computing Qualitatively Correct Approximations of Balance Laws: Exponential-Fit, Well-Balanced and Asymptotic-Preserving, 1st ed.; SIMAI Springer Series; Springer: Milan, Italy, 2013. 89. Voltsinger, N.E.; Pelinovsky, E.N.; Klevannyi, K.A. Long Wave Dynamics of Coastal Regions; Gidrometeoizdat: Leningrad, Russia, 1989. 90. Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2009. 91. Khakimzyanov, G.S.; Shokina, N.Y.; Dutykh, D.; Mitsotakis, D. A new run-up algorithm based on local high-order analytic expansions. J. Comp. Appl. Math. 2016, 298, 82-96. 92. Dutykh, D.; Clamond, D.; Milewski, P.; Mitsotakis, D. Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations. Eur. J. Appl. Math. 2013, 24, 761-787. 93. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations: Nonstiff Problems; Springer: Berlin, Germany, 2009. 94. Dutykh, D.; Pelinovsky, E. Numerical simulation of a solitonic gas in KdV and KdV-BBM equations. Phys. Lett. A 2014, 378, 3102-3110.