Инд. авторы: Sokol A.G., Tomilenko A.A., Bul'bak T.A., Sokol I.A, Zaikin P.A., Palyanova G.A., Palyanov Y.N.
Заглавие: Hydrogenation of carbon at 5.5-7.8 GPa and 1100-1400 degrees C: Implications to formation of hydrocarbons in reduced mantles of terrestrial planets
Библ. ссылка: Sokol A.G., Tomilenko A.A., Bul'bak T.A., Sokol I.A, Zaikin P.A., Palyanova G.A., Palyanov Y.N. Hydrogenation of carbon at 5.5-7.8 GPa and 1100-1400 degrees C: Implications to formation of hydrocarbons in reduced mantles of terrestrial planets // Physics of the Earth and Planetary Interiors. - 2019. - Vol.291. - P.12-23. - ISSN 0031-9201. - EISSN 1872-7395.
Внешние системы: DOI: 10.1016/j.pepi.2019.04.002; РИНЦ: 38246107; SCOPUS: 2-s2.0-85064553189; WoS: 000470047000002;
Реферат: eng: Formation of hydrocarbons (HCs) by reactions of hydrogen-bearing fluids with carbon (C-13 soot-like carbon, graphite, or diamond) has been simulated in experiments at pressures of 5.5-7.8 GPa and temperatures of 1100-1400 degrees C. Hydrogen fugacity (fH(2)) in tightly sealed Pt and Au capsules was controlled using the double capsule technique at the Mo + MoO2 + H2O (MMO) or Fe + FeO + H2O (IW) equilibria. Synthesis of light alkanes (C-2 > C-1 > C-3 > C-4), with smaller amounts of unsaturated hydrocarbons and O-bearing species, occurred all over the experimental P-T-fH(2) ranges. For the first time, formation of hydrocarbons from inorganic compounds was directly proved by the reaction of C-13 carbon with hydrogen, which yielded isotopically pure C-13 light alkanes. In 6.3 GPa runs, the fluid-graphite reaction rate progressively grew, and the process became avalanche-like as the run duration exceeded 1 h. The greatest amounts of HCs (CH4/C2H6 < 1, CH4/C3H8, and CH4/C4H10 <= 10) formed at 1400 degrees C in the 10-hr run. The amount of HC fluid synthesized at 1200 degrees C was twice smaller. An increase in the experiment duration to 40 h had no effect on amounts of HCs and the composition of species, which indicated that the system achieved equilibrium. The rate of HCs formation was slowest in runs with diamond. The fluid composition varied with pressure and temperature: it contained less methane and slightly more unsaturated hydrocarbons and O-bearing species as pressure and temperature were increased from 5.5 to 7.8 GPa and from 1150 to 1350 degrees C. An increase in the CO2 concentration in the fluid led to a drastic decrease in the yield of hydrocarbons. The absence of (CO2)-O-17 in products of the reaction between graphite and fluid containing O-17-labeled water indicated that water was not directly involved in HCs synthesis. The experiments have provided the first unambiguous evidence that volatile-rich and reduced mantles of terrestrial planets (at fO(2) near or below IW) provided favorable conditions for formation of a wide range of HCs, mainly light alkanes. Carbon for the HC synthesis may come from graphite, diamond, and soot-like carbon. It should be expected that the efficiency of HCs formation by carbon hydrogenation should be maximal for an increased heat flux (> 40 mW/m(2)) at mantle depths corresponding to the graphite stability region.
Ключевые слова: EARTHS MANTLE; GOLD CATALYSTS; OXIDATION-STATE; DIAMOND FORMATION; NITROGEN SPECIATION; ABIOTIC HYDROCARBON; HIGH-PRESSURE; CONSISTENT THERMODYNAMIC DATASET; Experiment; Hydrocarbons; Fluid; Mantle; Terrestrial planets; P-T CONDITIONS; REDOX STATE;
Издано: 2019
Физ. характеристика: с.12-23
Цитирование: 1. Benedetti, L.R., Nguyen, J.H., Caldwell, W.A., Liu, H., Kruger, M., Jeanloz, R., 1999. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100-102. 2. Chudnenko, K.V., 2010. Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, Applications. Academic Publishing House Geo, Novosibirsk (in Russian). 3. Connolly, J.A.D., 1990. Multivariable phase-diagrams -an algorithm based on generalized thermodynamics. Am. J. Sci. 290, 666-718. 4. Etiope, G., Sherwood Lollar, B., 2013. Abiotic methane on Earth. Rev. Geophys. 51 (2), 276-299. 5. Fedorov, I.I., Chepurov, A.I., Osorgin, N.Y., Sokol, A.G., Sobolev, N.V., 1991. Experimental and thermodynamic modeling of C-O-H fluid in equilibrium with graphite and diamond at high P-T parameters. Dokl. Akad. Nauk SSSR 320 (3), 710-712 (in Russian). 6. Frost, D.J., McCammon, C.A., 2008. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36, 389-420. 7. Fujimoto, K., Kameyama, M., Kunugi, T., 1980. Hydrogenation of adsorbed carbon monoxide on supported platinum group metals. J. Catal. 61, 7-14. 8. Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., Su, F., 2015. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 5 (29), 22759-22776. 9. Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., 1989. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 115, 301-309. 10. Hasterok, D., Chapman, D.S., 2011. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 307, 59-70. 11. Holland, T.J.B., Powell, R., 1990. An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: K2O-Na2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. J. Metamorphic Geol. 8, 89-124. 12. Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29 (3), 333-383. 13. Horita, J., Berndt, M.E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055-1057. 14. Huang, F., Daniel, I., Cardon, H., Montagnac, G., Sverjensky, D.A., 2017. Immiscible hydrocarbon fluids in the deep carbon cycle. Nat. Commun. 8, 15798. https://doi. org/10.1038/ncomms15798. 15. Hughes, M.D., Yi-Jun, Xu, Jenkins, P., McMorn, P., Landon, P., Enache, D.I., Carley, A.F., Attard, G.A., Hutchings, G.J., King, F., Hugh Stitt, E., Johnston, P., Griffin, K., Kiely, C.J., 2005. Nature 437, 1132-1135. 16. Jacob, D.E., Kronz, A., Viljoen, K.S., 2004. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 146, 566-576. 17. Kadik, A.A., Lukanin, O.A., 1986. Devolatilization of the Upper Mantle during its Melting. Nauka, Moscow (in Russian). 18. Karpov, I.K., Chudenko, K.V., Kulik, D.A., Bychinskii, V.A., 2002. The convex programming minimization of five thermodynamic potentials other that Gibbs energy in geochemical modeling. Am. J. Sci. 302, 281-311. 19. Kenney, J.F., Kutcherov, V.A., Bendeliani, N.A., Alekseev, V.A., 2002. The evolution of multicomponent systems at high pressures: the thermodynamic stability of the hydrogen-carbon system: the genesis of hydrocarbons and the origin of petroleum. Proc. Natl. Acad. Sci. U. S. A. 99, 10976-10981. 20. Kolesnikov, A., Kutcherov, V.G., Goncharov, A.F., 2009. Methane-derived hydrocarbons produced under upper-mantle conditions. Nat. Geosci. 2 (8), 566-570. 21. Kolesnikov, A.Y., Saul, J.M., Kutcherov, V.G., 2017. Chemistry of hydrocarbons under extreme thermobaric conditions. ChemistrySelect 2, 1336-1352. 22. Li, Y., Keppler, H., 2014. Nitrogen speciation in mantle and crustal fluids. Geochim. Cosmochim. Acta 129, 13-32. 23. Lobanov, S.S., Chen, P.N., Chen, X.J., Zha, C.S., Litasov, K.D., Mao, H.K., Goncharov, A.F., 2013. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 4. 24. Luth, R.W., 1989. Natural versus experimental control of oxidation state: effects on the composition and speciation of C-O-H fluids. Am. Mineral. 74, 50-57. 25. Luth, R.W., 2014. Volatiles in Earth's mantle. In: Treatise on Geochemistry 3.9. Elsevier, Oxford, pp. 355-391. 26. Marty, B., 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313-314, 56-66. 27. Matveev, S., Ballhaus, C., Fricke, K., Truckenbrodt, J., Ziegenben, D., 1997. Volatiles in the Earth's mantle: I. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim. Cosmochim. Acta 61 (15), 3081-3088. 28. McCollom, T.M., 2013. Laboratory simulations of abiotic hydrocarbon formation in Earth's deep subsurface. Rev. Mineral. Geochem. 75 (1), 467-494. 29. Mikhail, S., Sverjensky, D.A., 2014. Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere. Nat. Geosci. 7, 816-819. 30. Molina, L.M., Hammer, B., 2005. Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl. Catal. A Gen. 291, 21-31. 31. Mukhina, E., Kolesnikov, A., Kutcherov, V., 2017. The lower pT limit of deep hydrocarbon synthesis by CaCO3 aqueous reduction. Sci. Rep. 7, 5749. 32. Mysen, B.O., Yamashita, S., Chertkova, N., 2008. Solubility and solution mechanisms of NOH volatiles in silicate melts at high pressure and temperature-amine groups and hydrogen fugacity. Am. Mineral. 93, 1760-1770. 33. Ohtani, E., 2005. Water in the mantle. Elements 1, 25-30. 34. O'Neill, H.S.C., 1986. Mo-MoO2 (MOM) oxygen buffer and the free energy of formation of MoO2. Am. Mineral. 71 (7-8), 1007-1010. 35. O'Neill, H.S.C., Wall, V.J., 1987. The Olivine-Orthopyroxene-Spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's upper mantle. J. Petrol. 28 (6), 1169-1191. 36. Palyanov, Y.N., Borzdov, Y.M., Kupriyanov, I.N., Khokhryakov, A.F., 2010a. Effect of H2O on diamond crystal growth in metal-carbon systems. Cryst. Growth Des. 12 (11), 5571-5578. 37. Palyanov, Yu.N., Borzdov, Yu.M., Khokhryakov, A.F., Kupriyanov, I.N., Sokol, A.G., 2010b. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 10, 3169-3175. 38. Palyanov, Yu.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky, V.N., Sobolev, N.V., 2013. Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. U. S. A. 110, 20408-20413. 39. Park, J.N., McFarland, E.W., 2009. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. J. Catal. 266 (1), 92-97. 40. Reid, R.C., Prausnitz, J.M., Sherwood, T.K., 1977. The Properties of Gases and Liquids, third ed. McGraw-Hill Book Company, New York. 41. Robertson, A.J.B., 1949. The pyrolysis of methane, ethane and n-buthane on a platinum filament. Proc. R. Soc. Lond. A 199, 394-411. 42. Robie, R.A., Hemingway, B.S., 1995. Geological Survey Bulletin 2131. United States Government, Printing Office, Washington. 43. Robie, R.A., Hemingway, B.S., Fischer, J.R., 1978. Geological Survey Bulletin 1452. United States Government, Printing Office, Washington. 44. Rohrbach, A., Schmidt, M.W., 2011. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 472, 209. 45. Rubie, D.C., Frost, D.J., Mann, U., Asahara, Y., Nimmo, F., Tsuno, K., Palme, H., 2011. Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301 (1), 31-42. 46. Scott, H.P., Hemley, R.J., Mao, H., Herschbach, D.R., Fried, L.E., Howard, W.M., Bastea, S., 2004. Generation of methane in the Earth's mantle: in situ high pressure-temperature measurements of carbonate reduction. Proc. Natl. Acad. Sci. U. S. A. 101, 14023-14026. 47. Sephton, M.A., Hazen, R.M., 2013. On the origins of deep hydrocarbons. Rev. Mineral. Geochem. 75 (1), 449-465. 48. Sharma, A., Cody, G.D., Hemley, R.J., 2009. In situ diamond-anvil cell observations of methanogenesis at high pressures and temperatures. Energy Fuel 23 (11), 5571-5579. 49. Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, G.D., Sobolev, N.V., Walter, M.J., 2013. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355-421. 50. Sim, H.S., Kim, T.A., Lee, K.H., Park, M., 2012. Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater. Lett. 89, 343-346. 51. Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H., Wang, W., 2016. Large gem diamonds from metallic liquid in Earth's deep mantle. Science 354, 1403-1405. 52. Sobolev, N.V., Efimova, E.S., Pospelova, L.N., 1981. Native iron in Yakutian diamonds and its mineral assemblage. Sov. Geol. Geophys. 22, 25-28. 53. Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Kuz'min, D.V., Grakhanov, S.A., Batanova, V.G., Logvinova, A.M., Bul'bak, T.A., Kostrovitskii, S.I., Yakovlev, D.A., Fedorova, E.N., Anastasenko, G.F., Nikolenko, E.I., Tolstov, A.V., Reutskii, V.N., 2018. Prospects of search for diamondiferous kimberlites in the northeastern Siberian. Platform, Russ. Geol. Geophys. 59, 1365-1379. 54. Sobolev, N.V., Tomilenko, A.A., Bul'bak, T.A., Logvinova, A.M., 2019. Composition of volatile components in the diamonds, associated garnet and olivine from diamond iferous peridotites from the Udachnaya pipe, Yakutia, Russia (by coupled gas chromatographic-mass spectrometric analysis). Engineering 5. https://doi.org/10.1016/j.eng.2019.03.002. 55. Sokol, A.G., Pal'yanov, Y.N., Pal'yanova, G.A., Tomilenko, A.A., 2004. Diamond crystallization in fluid and carbonate-fluid systems under mantle PT conditions: 1. Fluid Composition. Geochem. Int. 42 (9), 830-838. 56. Sokol, A.G., Palyanova, G.A., Palyanov, Yu.N., Tomilenko, A.A., Melenevsky, V.N., 2009. Fluid regime and diamond formation in the reduced mantle: experimental constraints. Geochim. Cosmochim. Acta 73, 5820-5834. 57. Sokol, A.G., Borzdov, Yu.M., Palyanov, Yu.N., Khokhryakov, A.F., 2015. High-temperature calibration of a multi-anvil high-pressure apparatus. High Pressure Res. 35, 139-147. 58. Sokol, A.G., Tomilenko, A.A., Bul'bak, T.A., Palyanova, G.A., Sokol, I.A., Palyanov, Y.N., 2017a. Carbon and nitrogen speciation in N-poor C-O-H-N fluids at 6.3 GPa and 1100-1400° C. Sci. Rep. 7. 59. Sokol, A.G., Palyanov, Y.N., Tomilenko, A.A., Bul'bak, T.A., Palyanova, G.A., 2017b. Carbon and nitrogen speciation in nitrogen-rich C-O-H-N fluids at 5.5-7.8 GPa. Earth Planet. Sci. Lett. 460, 234-243. 60. Sokol, A.G., Tomilenko, A.A., Bul'bak, T.A., Kruk, A.N., Sokol, I.A., Palyanov, Y.N., 2018. Fate of fluids at the base of subcratonic lithosphere: experimental constraints at 5.5-7.8 GPa and 1150-1350 deg C. Lithos 318, 419-433. 61. Somorjai, G.A., 1981. The catalytic hydrogenation of carbon monoxide. The formation of C1 hydrocarbons. Catal. Rev. 23, 189-202. 62. Sonin, V.M., Bul'bak, T.A., Zhimulev, E.I., Tomilenko, A.A., Chepurov, A.I., Pokhilenko, N.P., 2014. Synthesis of heavy hydrocarbons under PT conditions of the Earth's upper mantle. Dokl. Earth Sci. 454, 32-36. 63. Stachel, T., Luth, R.W., 2015. Diamond formation-Where, when and how? Lithos 220, 200-220. 64. Stachel, T., Harris, J.W., Brey, G.P., 1998. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Mineral. Petrol. 132, 34-47. 65. Stagno, V., Ojwang, D.O., McCammon, C.A., Frost, D.J., 2013. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 493, 84. 66. Tao, R., Zhang, L., Tian, M., Zhu, J., Liu, X., Liu, J., Höfer, H.E., Stagno, V., Fei, Y., 2018. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: constraints from petrological observation and experimental simulation. Geochim. Cosmochim. Acta 239, 390-408. 67. Tomilenko, A.A., Chepurov, A.I., Pal'yanov, Y.N., Pokhilenko, L.N., Shebanin, A.P., 1997. Volatile Components in the Upper Mantle (from Data on Fluid Inclusions). Russian Geology and Geophysics c/c of Geologiia I Geofizika. vol. 38. pp. 294-303. 68. Tomilenko, A.A., Ragozin, A.L., Shatskii, V.S., Shebanin, A.P., 2001. Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl. Earth Sci. 379, 571-574. 69. Wadhwa, M., 2001. Redox state of Mars' upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291 (5508), 1527-1530. 70. Wadhwa, M., 2008. Redox conditions on small bodies, the moon and Mars. Rev. Mineral. Geochem. 68 (1), 493-510. 71. Yang, X., Keppler, H., Li, Y., 2016. Molecular hydrogen in mantle minerals. Geochem. Perspect Lett. 2, 160-168. 72. Yokokawa, H., 1988. Tables of thermodynamic properties of inorganic compounds. Journal of the national chemical laboratory for industry, Tsukuba Ibaraki 305. Japan 83, 27-118.