Инд. авторы: Zhukov V.P., Akturk S., Bulgakova N.M.
Заглавие: Asymmetric interactions induced by spatio-temporal couplings of femtosecond laser pulses in transparent media
Библ. ссылка: Zhukov V.P., Akturk S., Bulgakova N.M. Asymmetric interactions induced by spatio-temporal couplings of femtosecond laser pulses in transparent media // Journal of the Optical Society of America B: Optical Physics. - 2019. - Vol.36. - Iss. 6. - P.1556-1564. - ISSN 0740-3224. - EISSN 1520-8540.
Внешние системы: DOI: 10.1364/JOSAB.36.001556; РИНЦ: 41791267; РИНЦ: 41626177; РИНЦ: 41626177; SCOPUS: 2-s2.0-85069588521; WoS: 000469845600021;
Реферат: eng: Numerous experimental studies in recent years have revealed intriguing symmetry breakings during non-linear interaction of ultrashort laser pulses with materials. Dependence of the formed structures on the direction of laser scanning and polarization, an effect known as non-reciprocal writing, is one of the most commonly observed asymmetries. These observations are generally attributed to spatio-temporal couplings (primarily pulse-front tilt) in the laser pulses. Even though such couplings indeed break the spatial symmetry of the light-matter interactions, a detailed understanding of ongoing phenomena in the microscopic level is still lacking. In this work, we present our theoretical results, which, to the best of our knowledge, constitute the first demonstration of the physical mechanisms behind non-reciprocal writing and related effects in transparent media. Our model is based on non-linear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, and rate equations for the evolution of defects inside the material. It has enabled us to gain a qualitative insight into the features of propagation of ultrashort laser pulses with tilted pulse fronts, in the regimes of volumetric laser modification of transparent materials. (c) 2019 Optical Society of America
Ключевые слова: SILICA; DYNAMICS;
Издано: 2019
Физ. характеристика: с.1556-1564
Цитирование: 1. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat. Photonics 2, 219-225 (2008). 2. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85, 5694-5696 (2004). 3. V. Mizeikis, S. Juodkazis, K. Sun, and H. Misawa, "Fabrication of micro- and nanostructures in thin metallic films by femtosecond laser ablation," Proc. SPIE 7591, 75910J (2011). 4. S. M. Yalisove, K. Sugioka, and C. P. Grigoropoulos, "Advances and opportunities of ultrafast laser synthesis and processing," MRS Bull. 41(12), 955-959 (2016). 5. A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003). 6. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, "Quill writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151120 (2007). 7. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, "Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials," Opt. Express 18, 24673-24678 (2010). 8. P. S. Salter and M. J. Booth, "Dynamic control of directional asymmetry observed in ultrafast laser direct writing," Appl. Phys. Lett. 101, 141109 (2012). 9. B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, "Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?" Light: Sci. Appl. 5, e16178 (2016). 10. C. Jing, Z. Wang, Y. Cheng, C. Jing, Z. Wang, and Y. Cheng, "Characteristics and applications of spatiotemporally focused femtosecond laser pulses," Appl. Sci. 6, 428 (2016). 11. H. Song, Y. Dai, J. Song, H. Ma, X. Yan, and G. Ma, "Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process," Appl. Phys. A 123, 255 (2017). 12. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams," Opt. Express 13, 8642-8661 (2005). 13. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, "Spatio-temporal couplings in ultrashort laser pulses," J. Opt. 12, 093001 (2010). 14. J. A. Wheeler, A. Borot, S. Monchocé, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quéré, "Attosecond lighthouses from plasma mirrors," Nat. Photonics 6, 829-833 (2012). 15. J. A. Fülöp and J. Hebling, "Applications of tilted-pulse-front excitation," in Recent Optical and Photonic Technologies (IntechOpen, 2010). 16. A. Popp, J. Vieira, J. Osterhoff, Z. Major, R. Hörlein, M. Fuchs, R. Weingartner, T. P. Rowlands-Rees, M. Marti, R. A. Fonseca, S. F. Martins, L. O. Silva, S. M. Hooker, F. Krausz, F. Grüner, and S. Karsch, "All-optical steering of laser-wakefield-accelerated electron beams," Phys. Rev. Lett. 105, 215001 (2010). 17. R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, "Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing," Light: Sci. Appl. 3, e169 (2014). 18. N. M. Bulgakova, V. P. Zhukov, and Y. P. Meshcheryakov, "Theoretical treatments of ultrashort pulse laser processing of transparent materials: toward understanding the volume nanograting formation and quill writing effect," Appl. Phys. B 113, 437-449 (2013). 19. N. M. Bulgakova, V. P. Zhukov, V. P. Sonina, and Y. P. Meshcheryakov, "Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?" J. Appl. Phys. 118, 233108 (2015). 20. N. M. Bulgakova, V. P. Zhukov, Y. P. Meshcheryakov, L. Gemini, J. Brajer, D. Rostohar, and T. Mocek, "Pulsed laser modification of transparent dielectrics: what can be foreseen and predicted by numerical simulations?" J. Opt. Soc. Am. B 31, C8-C14 (2014). 21. P. Petropoulos, "Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates," SIAM J. Appl. Math. 60, 1037-1058 (2000). 22. Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, "Femtosecond pulse front tilt caused by angular dispersion," Opt. Eng. 32, 2501-2503 (1993). 23. A. G. Kostenbauder, "Ray-pulse matrices: a rational treatment for dispersive optical systems," IEEE J. Quantum Electron. 26, 1148-1157 (1990). 24. W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photonics 2, 99-104 (2008). 25. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, "Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals," Phys. Rev. B 55, 5799-5810 (1997). 26. G. Petite, S. Guizard, P. Martin, and F. Quéré, "Comment on 'ultrafast electron dynamics in femtosecond optical breakdown of dielectrics'," Phys. Rev. Lett. 83, 5182 (1999). 27. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, "Laser-induced defects in fused silica by femtosecond IR irradiation," Phys. Rev. B 73, 224117 (2006). 28. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, "Anatomy of a femtosecond laser processed silica waveguide [invited]," Opt. Mater. Express 1, 998-1008 (2011). 29. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, "Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses," J. Appl. Phys. 101, 043506 (2007). 30. R. E. Schenker and W. G. Oldham, "Ultraviolet-induced densification in fused silica," J. Appl. Phys. 82, 1065-1071 (1997). 31. P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. K. Graham, D. L. Kinser, and E. G. Wolff, "Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics," J. Am. Ceram. Soc. 71, 796-802 (1988). 32. I. Miyamoto, K. Cvecek, and M. Schmidt, "Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulses," Phys. Procedia 12, 378-386 (2011). 33. C. G. Durfee, M. Greco, E. Block, D. Vitek, and J. A. Squier, "Intuitive analysis of space-time focusing with double-ABCD calculation," Opt. Express 20, 14244-14259 (2012). 34. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, "Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials," Opt. Express 18, 18086-18094 (2010).