Инд. авторы: Grigoriev Y.N., Meleshko S.V., Suriyawichitseranee A.
Заглавие: Group Properties of Equations of the Kinetic Theory of Coagulation
Библ. ссылка: Grigoriev Y.N., Meleshko S.V., Suriyawichitseranee A. Group Properties of Equations of the Kinetic Theory of Coagulation // Journal of Applied Mechanics and Technical Physics. - 2019. - Vol.60. - Iss. 2. - P.350-364. - ISSN 0021-8944. - EISSN 1573-8620.
Внешние системы: DOI: 10.1134/S0021894419020160; РИНЦ: 41649449; SCOPUS: 2-s2.0-85066470656; WoS: 000470672500016;
Реферат: eng: Nonlocal equations of the coagulation theory are studied by the group analysis methods. In addition to the integro-differential Smoluchowski equation, equivalent models are also considered, including the equation for the Laplace transform of the original equation, an infinite system of equations for the power moments of its solution, and the equation for the generating function of the power moments. Admitted Lie groups for the considered equations are found, their relationships are studied, and the corresponding invariant solutions are analyzed. © 2019, Pleiades Publishing, Ltd.
Ключевые слова: Smoluchowski equation; Power moments; Non-local equations; Invariant solutions; Group properties; Group analysis; Generating functions; Laplace transforms; Coagulation; Smoluchowski equation; power moments; Laplace transform; invariant solutions; group analysis; Admitted Lie group; Group theory;
Издано: 2019
Физ. характеристика: с.350-364
Цитирование: 1. L. I. Sedov, Similarity and Dimensional Analysis (Gostekhteorizdat, Moscow, 1959; Academic Press, New York, 1959). 2. F. Leyras, “Scaling Theory and Exactly Solvable Models in the Kinetics of Irreversible Aggregation,” Phys. Rep. 383 (95), 1–160 (2003). 3. F. Leyras, “Rigorous Results in the Scaling Theory of Irreversible Aggregation,” J. Nonlinear Math. Phys. 12(Suppl. 1), 449–465 (2005). 4. L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982). 5. Yu. N. Grigoriev and S. V. Meleshko, “Investigation of Invariant Solutions of the Boltzmann Kinetic Equations and its Models,” Preprint No. 18-86 (Inst. Theor. Appl. Mech., Siberian Branch, Acad. of Sci. of the USSR, Novosibirsk, 1986). 6. Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, and S. V. Meleshko, Symmetries of Integro-Differential Equation with Applications in Mechanics and Plasma Physics (Springer, Berlin-Heidelberg, 2010). (Lecture Notes Phys.; Vol. 806.) 7. Yu. N. Grigoriev and S. V. Meleshko, “Group Analysis of Kinetic Equations,” Russ. J. Anal. Math. Model. 10(5), 425–447 (1995). 8. V. M. Voloshchuk and Yu. S. Sedunov, Coagulation Processes in Disperse Systems (Gidrometeoizdat, Leningrad, 1975) [in Russian]. 9. V. M. Voloshchuk, Kinetic Theory of Coagulation (Gidrometeoizdat, Leningrad, 1984) [in Russian]. 10. V. N. Chetverikov and A. G. Kudryavtsev, “A Method for Computing Symmetries and Conservation Laws of Integro-Differential Equations,” Acta Appl. Math., No. 41, 45–56 (1995). 11. M. N. Kogan, Rarefied Gas Dynamics (Nauka, Moscow 1967) [in Russian]. 12. M. Krook and T. T. Wu, “Exact Solutions of the Boltzmann Equation,” J. Phys. Fluids 20 (10), 1589–1595 (1977). 13. T. F. Nonenmacher, “Application of the Similarity Method to the Nonlinear Boltzmann Equation,” Z. angev. Math. Phys. 35 (5), 680–691 (1984). 14. Yu. N. Grigoriev, S. V. Meleshko, and A. Suriyawichitseranee, “On Group Classification of the Spatially Homogeneous and Isotropic Boltzmann Equation with Sources,” Int. Non-Linear Mech. 47, 1014–1019 (2012). 15. A. C. Hearn, Reduce Users Manual, Version 3.3, Tech. Report CP 78 (Rand Corp., Santa Monica, 1987). 16. S. V. Meleshko, Methods for Constructing Exact Solutions of Partial Differential Equations (Springer, New York, 2005).