Инд. авторы: | Medvedev S., Vaseva I., Chekhovskoy I., Fedoruk M. |
Заглавие: | Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem |
Библ. ссылка: | Medvedev S., Vaseva I., Chekhovskoy I., Fedoruk M. Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem // Optics Letters. - 2019. - Vol.44. - Iss. 9. - P.2264-2267. - ISSN 0146-9592. - EISSN 1539-4794. |
Внешние системы: | DOI: 10.1364/OL.44.002264; РИНЦ: 38699212; PubMed: 31042199; SCOPUS: 2-s2.0-85065488853; WoS: 000466351300034; |
Реферат: | eng: We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra. © 2019 Optical Society of America
|
Ключевые слова: | Spectral problem; Second orders; Numerical algorithms; Initial problem; Problem solving; Finite-difference algorithms; Optoelectronic devices; Optics; Fourth order; |
Издано: | 2019 |
Физ. характеристика: | с.2264-2267 |