Инд. авторы: Medvedev S., Vaseva I., Chekhovskoy I., Fedoruk M.
Заглавие: Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem
Библ. ссылка: Medvedev S., Vaseva I., Chekhovskoy I., Fedoruk M. Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem // Optics Letters. - 2019. - Vol.44. - Iss. 9. - P.2264-2267. - ISSN 0146-9592. - EISSN 1539-4794.
Внешние системы: DOI: 10.1364/OL.44.002264; РИНЦ: 38699212; PubMed: 31042199; SCOPUS: 2-s2.0-85065488853; WoS: 000466351300034;
Реферат: eng: We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra. © 2019 Optical Society of America
Ключевые слова: Spectral problem; Second orders; Numerical algorithms; Initial problem; Problem solving; Finite-difference algorithms; Optoelectronic devices; Optics; Fourth order;
Издано: 2019
Физ. характеристика: с.2264-2267