Инд. авторы: Павлова С.В., Чепелева Е.В., Дементьева Е.В., Григорьева Е.В., Сорокоумов Е.Д., Слотвицкий М.М., Пономаренко А.В., Малахова А.А., Докучаева А.А., Сергеевичев Д.С., Покушалов Е.А., Закиян С.М.
Заглавие: Исследование выживаемости и функциональной активности кардиомиоцитов, дифференцированных из ИПСК человека, при трансплантации в мышей линии SCID
Библ. ссылка: Павлова С.В., Чепелева Е.В., Дементьева Е.В., Григорьева Е.В., Сорокоумов Е.Д., Слотвицкий М.М., Пономаренко А.В., Малахова А.А., Докучаева А.А., Сергеевичев Д.С., Покушалов Е.А., Закиян С.М. Исследование выживаемости и функциональной активности кардиомиоцитов, дифференцированных из ИПСК человека, при трансплантации в мышей линии SCID // Гены и клетки. - 2018. - Т.13. - № 4. - С.51-60. - ISSN 2313-1829.
Внешние системы: DOI: 10.23868/201812047; РИНЦ: 37217683;
Реферат: eng: Conduction and heart rhythm disorders can be caused by both functional pathology and severe organic lesions of the heart. The possibility of using cell-based replacement cell therapy derived from induced pluripotent stem cells to compensate for lost myocardial tissue or the conduction system is currently being studied. The aim of the work is to study the survival and functional activity of cardiomyocytes differentiated from induced human pluripotent stem cells in intramyocardial and subcutaneous abdominal transplantation in a clots of proteins of the basement membrane matrix Matrigel to the SCID mice. After 2 and 5 weeks after intramyocardial and 2, 7, 14, 21 and 28 days after subcutaneous transplantation, the survival and activity of cardiomyocytes were studied by cytological methods. Human cardiomyocytes were detected in mice for at least 35 days. after transplantation and did not cause ectopic electrical activity of the myocardium. When assessing the functional activity of cardiomyocytes in subcutaneous matrigel plugs using the method of optical mapping of calcium ion currents for 2-28 days. after injection, it was shown that only a small fraction of cardiomyocytes after transplantation was able to spontaneously oscillate the calcium ions. We assume that contractile cardiomyocytes obtained from induced pluripotent human cells lose their ability to spontaneous excitation during in vivo transplantation, and we observe only the activity of pacemaker cardiomyocytes in optical mapping.
rus: Нарушения проводимости и сердечного ритма могут быть вызваны как функциональной патологией, так и тяжёлыми органическими поражениями сердца. В настоящее время изучается возможность применения заместительной клеточной терапии на основе кардиомиоцитов, полученных из индуцированных плюрипотентных стволовых клеток, для компенсации утраченной ткани миокарда или проводящей системы. Цель работы - изучение выживаемости и функциональной активности кардиомиоцитов, дифференцированных из индуцированных плюрипотентных стволовых клеток человека, при интрамиокардиальной и подкожной абдоминальной трансплантации в сгустке белков экстраклеточного матрикса Matrigel иммунодефицитным мышам линии SCID. Кардиомиоциты анализировали на маркеры кардиальной дифференцировки, проводили электрофизиологическое исследование. Через 2 и 5 недель после интрамиокардиальной и через 2, 7, 14, 21 и 28 суток после подкожной трансплантации изучали выживаемость кардиомиоцитов цитологическими методами. Кардиомиоциты человека выявлялись в организме мышей как минимум в течение 35 суток после интрамиокардиальной трансплантации, однако на электрокардиограммах эктопическая электрическая активность миокарда не была зафиксирована. После подкожной трансплантации кардиомиоциты сохраняли жизнеспособность в течение всего срока эксперимента. При оценке функциональной активности кардиомиоцитов в составе подкожных матригельных трансплантатов методом оптического картирования потоков ионов кальция на 2-28 сут. после инъекции было показано, что лишь незначительная часть кардиомиоцитов после трансплантации оказалась способна к спонтанной осцилляции потоков ионов кальция. Мы предполагаем, что сократительные кардиомиоциты, полученные из индуцированных плюрипотентных стволовых клеток человека, при трансплантации in vivo теряют способность к спонтанному возбуждению и при оптическом картировании мы наблюдаем только активность пейсмейкерных кардиомиоцитов.
Ключевые слова: клеточная трансплантология; матригельный трансплантат; оптическое картирование; induced pluripotent stem cells; cardiomyocytes; cell transplantology; Matrigel plug; optical mapping; индуцированные плюрипотентные стволовые клетки; кардиомиоциты; pacemaker cells; пейсмейкерные клетки;
Издано: 2018
Физ. характеристика: с.51-60
Цитирование: 1. Burridge P.W., Matsa E., Shukla P. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 2014; 11(8): 855-60. 2. Lian X., Zhang J., Azarin S.M. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/ß-catenin signaling under fully defined conditions. Nat. Protoc. 2013; 8(1): 162-75. 3. Agladze N.N., Halaidych O.V., Tsvelaya V.A. et al. Synchronization of excitable cardiac cultures of different origin. Biomater. Sci. 2017; 5: 1777-85. 4. Shadrin I.Y., Allen B.W., Qian Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 2017; 8(1): 1825-40. 5. Masuda S., Shimizu T. Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv. Drug Deliv. Rev. 2016; 96: 103-9. 6. Funakoshi S., Miki K., Takaki T. et al. Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci. Rep. 2016; 6: 1-14. 7. Riegler J., Tiburcy M., Ebert A. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 2015; 117(8): 720-30. 8. Matsuo T., Masumoto H., Tajima S. et al. Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells. Sci. Rep. 2015; 5: 1-15 9. Chong J.J.H., Yang X., Don C.W. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014; 510(7504): 273-7. 10. Yaniv Y., Spurgeon H.A., Lyashkov A.E. et al. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity. PLoS One 2012; 7(5): 1-13. 11. Zhang X.H., Wei H., Saric T. et al. Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium 2015; 57(5-6): 321-36. 12. Morad M., Zhang X. Mechanisms of spontaneous pacing: SA-nodal cells, neonatal cardiomyocytes, and human Stem cell derived cardiomyocytes. Can. J. Physiol. Pharmacol. 2017; 95(10): 1100-7. 13. Байрамова С.А., Стрельников А.Г., Романов А.Б. и др. Перспективы создания пейсмейкерной сердечной ткани с использованием современных генетических и тканеинженерных технологий. Гены и Клетки 2017; XII(2): 29-36. 14. Grigor'eva E.V., Malankhanova T.B., Surumbayeva A. et al. Generation and characterization of iPSCs from human embryonic dermal fibroblasts of a healthy donor from Siberian population. BioRxiv https://doi. org/10.1101/455535. 15. Слотвицкий М.М., Цвелая В.А., Фролова Ш.Р. и др. Исследование функциональности получаемых из индуцированных плюрипотентных стволовых клеток кардиомиоцитов для моделирования сердечных аритмий при синдроме удлиненного интервала QT. Вавиловский журнал генетики и селекции 2018; 22(2): 187-95. 16. Gao E., Lei Y.H., Shang X. et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ. Res. 2010; 107(12): 1445-53. 17. Чепелева Е.В., Балашов В.А., Докучаева А.А. и др. Исследование биологической совместимости полилактидных нановолоконных матриксов, заселенных кардиальной клеточной культурой, в эксперименте на мини-свиньях. Гены и Клетки 2017; XII(4): 62-8. 18. Чепелева Е.В., Павлова С.В., Малахова А.А. и др. Терапия хронического кардиосклероза у крыс линии WAG культурами кардиоваскулярных клеток, обогащенными стволовыми клетками сердца. Клеточные технологии в биологии и медицине 2015; 3: 56-65. 19. Dubois N.C., Craft A.M., Sharma P. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 2011; 29(11): 1-13. 20. Ye W., Wang J., Song Y. et al. A common Shox2-Nkx2.5 antagonistic mechanism primes the pacemaking cell fate in the pulmonary vein myocardium and sinoatrial node. Development 2015; 142: 2521-32. 21. van Weerd J.H., Christoffels V.M. The formation and function of the cardiac conduction system. Dev. 2016; 143(2): 197-210. 22. Protze S.I., Liu J., Nussinovitch U. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 2016; 12: 1-16. 23. Kermani P., Rafii S., Hempstead B.L. et al. Neurotrophins promote revascularization by local recruitment of TrkB + endothelial cells and systemic mobilization of hematopoietic progenitors. The Journal of Clinical Investigation 2005; 115(3):653-63. 24. Zakharova I.S., Zhiven’ M.K., Saaya S.B. et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J. Transl. Med. 2017; 15(1): 54-70. 25. Kolanowski T.J., Antos C.L., Guan K. Making human cardiomyocytes up to date: Derivation, maturation state and perspectives. International Journal of Cardiology 2017; 241: 379-86. 26. Duelen R., Sampaolesi M. Stem cell technology in cardiac regeneration: A Pluripotent Stem Cell Promise. EBioMedicine 2017; 16: 30-40. 27. Ronaldson-Bouchard K., Ma S.P., Yeager K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018; 556: 239-43. 28. Eng G., Lee B.W., Protas L. et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 2016; 7: 1-10. 29. Li J., Minami I., Shiozaki M. et al. Human pluripotent stem cell-derived cardiac tissue-like constructs for repairing the infarcted myocardium. Stem Cell Reports 2017; 9(5): 1546-59. 30. Liu Y., Chen B., Yang X. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 2018; 36(7): 597-605. 31. Chauveau S., Anyukhovsky E.P., Ben-Ari M. et al. Induced pluripotent stem cell-derived cardiomyocytes provide in vivo biological pacemaker function. Circ. Arrhythmia Electrophysiol. 2017; 10: 1-10. 32. Павлова С.В., Перовский П.П., Чепелева Е.В. и др. Характеристика кардиальных культур клеток, полученных из экспланта сердечной мышцы человека. Клеточные технологии в биологии и медицине 2013; 3: 132-41. 33. Павлова С.В., Сергеевичев Д.С., Чепелева Е.В. и др. Сравнение мезенхимальных стромальных клеток костного мозга и региональных стволовых клеток сердца и фибробластов кожи человека. Патология кровообращения и кардиохирургия 2015; 19(4-2): 12-9. 34. Павлова С.В., Розанова И.А., Чепелева Е.В. и др. Ангиогенный потенциал кардиальных стволовых и мезенхимальных стромальных клеток костного мозга крысы. Патология кровообращения и кардиохирургия 2015; 19(4-2): 77-84. 35. Павлова С.В., Леонова Е.А., Чепелева Е.В. и др. Мониторинг трансплантации клеток кардиосфер в фибриновом геле в зону ишемического повреждения миокарда с использованием люциферазной репортерной системы. Гены и Клетки 2017; XII(4): 69-75.