Инд. авторы: | Шапарев Н.Я., Шокин Ю.И. |
Заглавие: | Моделирование летнего гидротермического режима в нижнем бьефе Красноярской ГЭС |
Библ. ссылка: | Шапарев Н.Я., Шокин Ю.И. Моделирование летнего гидротермического режима в нижнем бьефе Красноярской ГЭС // Вычислительные технологии. - 2018. - Т.23. - № 6. - С.107-114. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | DOI: 10.25743/ICT.2018.23.6.010; РИНЦ: 36684767; |
Реферат: | rus: Предлагается модель летнего гидротермического режима р. Енисей в нижнем бьефе Красноярской ГЭС на основе детерминированного подхода. На теплообмен воды с окружающей средой влияют следующие физические процессы: поглощение водой прямой и рассеянной солнечной радиации; поглощение поверхностью воды тепловой инфракрасной радиации (ТИР), исходящей из атмосферы; излучение поверхностью воды ТИР; испарительный и конвективный теплообмен. Результаты моделирования сравниваются с температурными данными, полученными с гидропостов. eng: Here we consider the summertime hydrothermal regime in a 124-km river occurring within the interval (reach) downstream of the Krasnoyarsk HPP on July 3, 2016 based on the deterministic modelling approach. The reach area is divided by 4 cross-section lines (0.5, 40, 77, 124 km) with gauging stations at the first, second and forth section lines to measure water temperature. Temperature measurements at the gauging stations are taken at time (at hour 08:00 and 20:00). Water temperature at the first gauging station was 7.2 ∘ C and remained constant during the time period under consideration. To carry out mathematical simulation by analogy with other authors, we use the Fourier equation. We have proposed a simple model for simulating summertime hydrothermal regime of a river based on calculation of water temperature in a coordinate system moving with water. The physically based estimation of water heat budget takes into account absorption of solar radiation by water surface, emission and absorption of atmospheric thermal infrared radiation (TIR) by water, convective heating of water as well as heat loss due to evaporative processes. The temporal fluctuation pattern of direct and scattered solar radiation depends on the zenith angle and atmospheric absorption. The dominant water heating factor is solar radiation during the daytime and atmospheric TIR at night. Emits TIR defined by the Stefan-Boltzmann law. Water temperatures 124 km downstream of the Krasnoyarsk HPP on the Yenisei River computed using the proposed model with consideration of morphometric characteristics are close to the recorded temperatures observed at the gauging stations, which proves that the deployed physical-mathematical model providing an adequate description of the actual hydrothermal processes. Our spatial-temporal analysis has revealed no diurnal fluctuations of water temperature, which we attribute to the fact that “cold” water leaving the dam enters the “warm” surrounding environment providing a permanent source of water heating. |
Ключевые слова: | water temperature; моделирование; температура воды; река Енисей; modelling; Yenisei River; |
Издано: | 2018 |
Физ. характеристика: | с.107-114 |
Цитирование: | 1. Dingman, L.S. Physical hydrology. Third edition. Waveland Press, 2015. 670 р. 2. Shaparev, N., Astafiev, N. Water resources of the Krasnoyarsk Krai in sustainable water management indices // Intern. J. of Sustainable Development & World Ecology. 2008. Vol. 15, No. 6. P. 574-583. 3. Shaparev, N. Regional sustainable nature management // Herald of the Russian Academy of Sciences. 2009. Vol. 79, No. 6. P. 574-579. 4. Численное моделирование задач гидроледотермики водотоков / В.М. Белолипецкий, С.Н. Генова, В.Б. Туговиков, Ю.И. Шокин. Новосибирск: Изд-во СО РАН, 1993. 138 с. 5. Kondratyev, K.Ya. Radiation in the atmosphere. N.Y.: Acad. Press, 1969. 631 p. 6. Handcock, R.N., Torgersen, C.E., Cherkauer, K.A. et al. Fluvial remote sensing for science and management. First edition / P.E. Charbonneau, H. Piegay (Eds). John Wiley & Sons, 2012. Р. 85-113. 7. Flerchinger, G.N., Wei Xaio, Marks, D. et al. Comparison of algorithms for incoming atmospheric longwave radiation // Water Resources Research. 2009. Vol. 45. W 03123. 8. Iziomon, M.G., Mayer, H., Matzarakis, A. Down ward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parametrization // J. of Atmospheric and Solar-Terrestrial Phys. 2003. Vol. 65. P. 1107-1116. 9. Шуляковский Л.Г. Формула для расчета испарения с учетом температуры свободной поверхности воды // Тр. Ордена Ленина Гидрометеорологического НИЦ СССР. 1969. Вып. 53. С. 3-13. 10. Boyd, M., Kasper, B. Analytical methods for dynamic open channel heat and mass transfer: Methodology for heat source model version 7.0. Available at: https://www.oregon.gov/deq/ FilterDocs/heatsourcemanual.pdf 11. Bowen, I.S. The ration of heat losses by conduction and by evaporation from any water susface // Physical Review. 1926. Vol. 27. P. 749-787. |