Инд. авторы: Имомназаров Ш.Х., Михайлов А.А., Доровский В.Н.
Заглавие: Численое решение одной динамической задачи магнитопороупругости
Библ. ссылка: Имомназаров Ш.Х., Михайлов А.А., Доровский В.Н. Численое решение одной динамической задачи магнитопороупругости // Интерэкспо Гео-Сибирь. - 2018. - Т.4. - № 2. - С.87-94. - ISSN 2618-981X.
Внешние системы: РИНЦ: 36481578;
Реферат: rus: Численно исследуется одномерная нестационарная задача электромагнитоупругости пористых насыщенных сред при импульсном воздействии электромагнитным квазистационарным полем. Проиллюстрирована применимость спектрального метода Лагерра к одномерной динамической задачи импульсного воздействия, описываемого уравнениями электомагнитоакустики. Численно установлены особенности акустического отклика на импульсное электромагнтное воздействие: найдена связь амплитуд «поперечных» акустических волн, пришедших на внутреннюю сторону обсадной колонны от параметров, характеризующих среду и внешнее электромагнитное воздействие. Полученные результаты создают основу для разработки технологических методов измерения электроакустического параметра и электропроводости среды, расположенной за обсадной колонной.
eng: This paper numerically studies the one-dimensional non-stationary problem of the electromagnetoe-lasticity of porous saturated media for a pulsed electromagnetic quasi-stationary field. The applicability of the Laguerre spectral method to the one-dimensional dynamic impulse action problem de-scribed by the electromagnetoacoustics equations is illustrated. The acoustic response to the pulsed electromagnetic effect is numerically determined: there is found a correlation between the ampli-tudes of "transverse" acoustic waves that have come to the inner side of the casing from the parame-ters characterizing the medium and the external electromagnetic effect. The obtained results form the basis for the development of technological methods for measuring the electroacoustic parameter and the electrical conductivity of the medium located behind the casing.
Ключевые слова: Saturated porous media; friction coefficient; Electrokinetic parameters; magnetoacoustic oscillation; преобразование Лагерра; пористая насыщенная среда; коэффициент трение; электрокинетические параметры; магнитозвуковые колебания; Laguerre transform;
Издано: 2018
Физ. характеристика: с.87-94
Цитирование: 1. Cheng C., Jinzhong Zh., Burns D. Effect of in-situ permeability on the propagation of Stoneley (tube) waves in a borehole // Geophysics. - 1981. - v. 46. - № 7. - P. 1042-1052. 2. Winkler K., Liu H., Johnson D. Permeability and borehole Stoneley waves: comparison between experiment and theory // Geophysics. - 1989. - v. 54. - № 1. - p. 66-75. 3. Paillet F.L. and Cheng C.H. Acoustic Waves in Boreholes, 1-264. - Boca Raton, Florida: CRC Press, 1991. 4. Burns D.R. Predicting Relative and Absolute Variations of In-Situ Permeability from Full- Waveform Acoustic Logs // The Log Analyst. - 1991. - v. 32. - No. 3. - pp. 246-255. 5. Tang X.M., Cheng C.H., Toksoz M.N. Dynamic Permeability and Borehole Stoneley Waves-A Simplified Biot-Rosenbaum Model // J. of the Acoustical Soc. of America. - 1991. - v. 90. - No.3. - pp. 1632-1646. 6. Tang X., Cheng C.H., Toksoz M.N. Stoneley-Wave Propagation in a Fluid Filled Borehole with a Vertical Fracture // Geophysics. - 1991. - v. 56. - No. 4. - pp. 447-460. 7. Saxena V. Permeability Quantification from Borehole Stoneley Waves // paper T. Trans., Annual Logging Symposium, SPWLA. - 1994. - pp.1-22. 8. Kimball C.V., Endo T. Quantitative Stoneley Mobility Inversion // paper BH 1.1. Expanded Abstracts, Annual Meeting Technical Program, SEG. - 1998. - pp. 252-255. 9. Dorovsky V.N., Podberezhnyy M., Nefedkin Y. Stoneley attenuation length and pore fluid salinity // Russian Geology and Geophysics. - 2011. - Т. 52. - № 2. - С. 250-258. 10. Dorovsky V., Dubinsky V., Podberezhnyy M., Nefedkin Y. Effect of porous fluid properties on stoneley wave parameters [Электронный ресурс] // Saint Petersburg 2010. Proceedings 4th International Conference (5-8 April 2010). - 2010. 11. Dorovsky V.N., Nefedkin Y.A., Fedorov A.I., Podberezhnyy M.Y. A logging method for estimating permeability, velocity of second compressional wave, and electroacoustic constant in electrolyte-saturated porous formations // Russian Geology and Geophysics. - 2010. - v. 51. - № 12. - pp. 1285-1294. 12. Podberezhnyy M., Nefedkin Y., Lamukhin A. Nonlinear effects in liquid and in fluid saturated friable media under DC Field // Saint Petersburg 2006: International Conference and Exhibition (Saint Petersburg, 16-19 October 2006). - 2006. - С. C009 13. Dorovsky V., Dubinsky V., Fedorov A., Podberezhnyy M., Nefedkin Yu., Perepechko Yu. Method and apparatus for estimating formation permeability and electroacoustic constant of an electrolyte-saturated multilayered rock taking into account osmosis. Patent Application Publication US 2010/0254218 A1. Oct. 7. - 2010. 14. Доровский В. Н., Доровский С.В. Электромагнитоакустический метод измерения электропроводности и дзета-потенциала // Геология и геофизика. - 2009. - Т. 50 (6). - С. 735-744. 15. Имомназаров Ш.Х., Доровский В.Н. Магнитозвуковые колебания в скважинных условиях, определяющие электрокинетические параметры пористой насыщенной среды // Интерэкспо ГЕО-Сибирь-2017. XIII Междунар. науч. конгр. : Междунар. науч. конф. «Дистанционные методы зондирования Земли и фотограмметрия, мониторинг окружающей среды, геоэкология» : сб. материалов в 2 т. (Новосибирск, 17-21 апреля 2017 г.). - Новосибирск : СГУГиТ, 2017. Т. 1. - С. 186-190. 16. Mikhailenko B.G. Spectral Laguerre method for the approximate solution of time dependent problems // Applied Mathematics Letters. - 1999. - No. 12. - pp. 105-110. 17. Mikhailenko B.G., Mikhailov A.A., Reshetova G.V. Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method // Pure apll. Geophys. - 2003. - No. 160. - pp. 1207-1224. 18. Mikhailenko B.G., Mikhailov A.A., Reshetova G.V. Numerical viscoelastic modeling by the spectral Laguerre method // Geophysical Prospecting. - 2003. - No. 51. - pp. 37-48. 19. Имомназаров Х.Х., Михайлов А.А. Применение спектрального метода для численного моделирования сейсмических волн в пористых средах при наличии диссипации энергии // СибЖВМ. - 2014. - Т. 17. - №2. - с. 139-147. 20. Berdyshev A, Imomnazarov Kh, Jian-Gang Tang, Mikhailov A. The Laguerre spectral method as applied to numerical solution of a two-dimensional linear dynamic seismic problem for porous media // Open Comput. Sci. - 2016. - v. 6. - pp.208-212. 21. Cheng, C., Jinzhong, Zh., Burns, D. (1981). Effect of in-situ permeability on the propagation of Stoneley (tube) waves in a borehole. Geophysics, 7, 1042-1052. 22. Winkler, K., Liu, H., Johnson, D. (1989). Permeability and borehole Stoneley waves: comparison between experiment and theory. Geophysics, 1, 66-75. 23. Paillet, F.L., Cheng, C.H. (1991). Acoustic Waves in Boreholes, Boca Raton, Florida: CRC Press. 24. Burns, D.R. (1991). Predicting Relative and Absolute Variations of In-Situ Permeability from Full-Waveform Acoustic Logs. The Log Analyst, 3, 246-255. 25. Tang, X.M., Cheng, C.H., Toksoz, M.N. (1991). Dynamic Permeability and Borehole Stoneley Waves-A Simplified Biot-Rosenbaum Model. J. of the Acoustical Soc. of America , 3, 1632- 1646. 26. Tang, X., Cheng, C.H., Toksoz, M.N. (1991). Stoneley-Wave Propagation in a Fluid Filled Borehole with a Vertical Fracture, Geophysics, 4, 447-460. 27. Saxena, V. (1994). Permeability Quantification from Borehole Stoneley Waves. paper T. Trans., Annual Logging Symposium, SPWLA, 1-22. 28. Kimball, C.V., Endo, T. (1998). Quantitative Stoneley Mobility Inversion. paper BH 1.1. Expanded Abstracts, 1998 Annual Meeting Technical Program, SEG, 252-255. 29. Dorovsky, V.N., Podberezhnyy, M., Nefedkin, Yu. (2011). Stoneley attenuation length and pore fluid salinity, Russian Geology and Geophysics, 2, 250-258. 30. Dorovsky, V., Dubinsky, V., Podberezhnyy, M., Nefedkin, Yu. (2010) Effect of porous fluid properties on Stoneley wave parameters, Saint Petersburg 2010. Proceedings 4th International Conference (5-8 April 2010), 17. 31. Dorovsky, V.N., Nefedkin, Yu.A., Fedorov, A.I., Podberezhnyy, M.Y. (2010). A logging method for estimating permeability, velocity of second compressional wave, and electroacoustic constant in electrolyte-saturated porous formations. Russian Geology and Geophysics, 12, 1285-1294. 32. Podberezhnyy, M., Nefedkin, Yu., Lamukhin, A. (2006). Nonlinear effects in liquid and in fluid saturated friable media under DC Field. Saint Petersburg 2006: International Conference and Exhibition (Saint Petersburg, 16-19 October 2006), C009. 33. Dorovsky, V., Dubinsky, V., Fedorov, A., Podberezhnyy, M., Nefedkin, Yu., Perepechko, Yu. (2010). Method and apparatus for estimating formation permeability and electroacoustic constant of an electrolyte-saturated multilayered rock taking into account osmosis. Patent Application Publication US 2010/0254218 A1. 34. Dorovsky, V. N., Dorovsky, S.V. (2009). Electromagnetic-acoustic method for measuring electrical conductivity and zeta potential. Russian Geology and Geophysics, 6, 735-744. 35. Imomnazarov, Sh. Kh., Dorovsky, V. N. (2017). Downhole magnetoacoustic oscillations determining the electrokinetic parameters of saturated porous medium. In Sbornik materialov Interekspo Geo-Sibir'-2017: Mezhdunarodnoy nauchnoy konferentsii: T. 1. [Proceedings of Interexpo GEO- Siberia-2017: International Scientific Conference: Vol. 1.] (pp. 186-190). Novosibirsk: SSUGT [in Russian]. 36. Mikhailenko, B.G. (1999). Spectral Laguerre method for the approximate solution of time dependent problems, Applied Mathematics Letters, 12, 105-110. 37. Mikhailenko, B.G., Mikhailov, A.A., Reshetova, G.V. (2003). Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method. Pure apll. Geophys, 160, 1207-1224. 38. Mikhailenko, B.G., Mikhailov, A.A., Reshetova, G.V. (2003). Numerical viscoelastic modeling by the spectral Laguerre method, Geophysical Prospecting, 51, 37-48. 39. Imomnazarov, Kh.Kh., Mikhailov, A.A. (2014). Application of a spectral method for numerical modeling of propagation of seismic fields in porous media dissipative case. Numerical Analysis and Applications, 2, 139-147. 40. Berdyshev, A., Imomnazarov, Kh., Jian-Gang Tang, Mikhailov, A. (2016). The Laguerre spectral method as applied to numerical solution of a two-dimensional linear dynamic seismic problem for porous media. Open Comput. Sci. 6, 208-212.