Инд. авторы: Крук А.Н., Сокол А.Г., Пальянов Ю.Н.
Заглавие: Фазовые отношения в системе гарцбургит-водосодержащий карбонатный расплав при 5.5–7.5 гпа и 1200–1350°с
Библ. ссылка: Крук А.Н., Сокол А.Г., Пальянов Ю.Н. Фазовые отношения в системе гарцбургит-водосодержащий карбонатный расплав при 5.5–7.5 гпа и 1200–1350°с // Петрология. - 2018. - Т.26. - № 6. - С.583-598. - ISSN 0869-5903.
Внешние системы: DOI: 10.1134/S0869590318060031; РИНЦ: 36342339;
Реферат: rus: Исследованы фазовые отношения в системе гарцбургит-водосодержащий карбонатный расплав, валовый состав которой моделирует первичный кимберлит. Эксперименты проведены при давлении 5.5 и 7.5 ГПа, температуре 1200–1350°С и ${{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}$ = 0.39–0.57, длительность 60 ч. Установлено, что в системе во всем диапазоне изученных параметров стабильной является ассоциация оливина, ортопироксена, граната, магнезита и расплава. С увеличением температуры и ${{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}$ в системе Ca# расплава заметно снижается и в перидотитовой матрице уменьшается доля оливина. Состав силикатных фаз в полученных образцах близок к составу минералов высокотемпературных мантийных перидотитов. Анализ полученных данных позволяет сделать вывод, что в основании субконтинентальной литосферы магнезит может образовываться за счет метасоматоза перидотитов под воздействием генерированных в астеносфере водосодержащих карбонатных расплавов. Процесс может реализовываться в температурном диапазоне, характерном для теплового потока 40–45 мВт/м2, который отвечает условиям образования наиболее глубинных перидотитовых ксенолитов. Кристаллизацию магнезита при реакционном взаимодействии с перидотитовой матрицей можно рассматривать как экспериментально обоснованный механизм накопления CO2 в субкратонной литосфере.
Ключевые слова: кимберлит; магнезит; метасоматоз; мантия;
Издано: 2018
Физ. характеристика: с.583-598
Цитирование: 1. Гирнис А.В., Рябчиков И.Д. Условия и механизмы генерации кимберлитовых магм // Геология рудн. месторождений. 2005. Т. 47. № 6. С. 524–536. 2. Гирнис А.В., Булатов В.К., Брай Г.П. Переход кимберлитовых расплавов в карбонатитовые при мантийных параметрах: экспериментальное изучение // Петрология. 2005. Т. 13. № 1. С. 3–18. 3. Когарко Л.Н. Щелочной магматизм и обогащенные мантийные резервуары. Механизмы возникновения, время появления и глубины формирования // Геохимия. 2006. № 1. С. 5–13. 4. Когарко Л.Н., Рябчиков И.Д. Алмазоносность и окислительный потенциал карбонатитов // Петрология. 2013. Т. 21. № 4. С. 350–371. 5. Костровицкий С.И., Соловьева Л.В., Яковлев Д.А. и др. Кимберлиты и мегакристная ассоциация минералов, изотопно-геохимическое исследование // Петрология. 2013. Т. 21. № 2. С. 143–162. 6. Крук А.Н., Сокол А.Г., Чеботарев Д.А. и др. Состав карбонатитового расплава, равновесного с лерцолитом при 5.5–6.3 ГПа, 1350°C // Докл. АН. 2016. Т. 467. № 3. С. 324–328. 7. Пальянов Ю.Н., Сокол А.Г., Хохряков А.Ф., Крук А.Н. Условия кристаллизации алмаза в кимберлитовом расплаве по экспериментальным данным // Геология и геофизика. 2015. Т. 56. № 1–2. С. 254–272. 8. Рябчиков И.Д., Гирнис А.В. Происхождение низкокальциевых кимберлитовых магм // Геология и геофизика. 2005. Т. 46. № 12. С. 1223–1233. 9. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии // Новосибирск: Наука, 1974. 264 с. 10. Соболев Н.В., Лаврентьев Ю.Г., Поспелова Л.Н., Соболев Е.В. Хромовые пиропы из алмазов Якутии // Докл. АН СССР. 1969. Т. 189. № 1. С. 162–165. 11. Сокол А.Г., Крук А.Н., Чеботарев Д.А. и др. Состав граната как индикатор условий взаимодействия перидотит–карбонатит в субкратонной литосфере (по экспериментальным данным) // Докл. АН. 2015. Т. 463. № 3. С. 331–331. 12. Соловьева Л.В., Калашникова Т.В., Костровицкий С.И., Суворова Л.Ф. Зональность гранатов в деформированных перидотитах из кимберлитовой трубки Удачная // Докл. АН. 2014. Т. 457. № 5. С. 579–585. 13. Becker M., le Roex A.P. Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: Petrogenesis and source region evolution // J. Petrol. 2006. V. 47. P. 673–703. 14. Boyd F.R., Pokhilenko N.P., Pearson D.G. et al. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths // Contrib. Mineral. Petrol. 1997. V. 128. P. 228–246. 15. Brey G.P., Bulatov V.K., Girnis A.V. Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa // Lithos 2009. V. 112. P. 249–259. 16. Brey G.P., Bulatov V.K., Girnis A.V. Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle // Chem. Geol. 2011. V. 281. P. 333–342. 17. Brey G.P., Kogarko L.N., Ryabchikov I.D. Carbon dioxide in kimberlitic melts // N. Jahrb., Mineral. Monatsh. 1991. № 4. P. 159–168. 18. Dalton J.A., Wood B.J. The compositions of primary carbonate melt and their evolution through wallrock reaction in the mantle // Earth Planet. Sci. Lett. 1993. V. 119. P. 511–525. 19. Dasgupta R., Hirschmann M.M. Effect of variable carbonate concentration on the solidus of mantle peridotite // Amer. Mineral. 2007. V. 92. P. 370–379. 20. Doucet L.S., Peslier A.H., Ionov D.A. et al. High water content in the Siberian cratonic mantle linked to melt metasomatism: an FTIR study of Udachnaya peridotite xenoliths // Geochim. Cosmochim. Acta 2014. V. 137. P. 159–187. 21. Girnis A.V., Brey G.P., Ryabchikov I.D. Origin of Group IA kimberlites: fluid saturated melting experiments at 45–55 kbar // Earth Planet. Sci. Lett. 1995. V. 134. P. 283–296. 22. Girnis A.V., Bulatov V.K., Brey G.P. Formation of primary kimberlite melts – Constraints from experiments at 6–12 GPa and variable CO2/H2O // Lithos. 2011. V. 127. P. 401–413. 23. Goncharov A.G., Ionov D.A., Doucet L.S., Pokhilenko L.N. Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia // Earth Planet. Sci. Lett. 2012. V. 357. P. 99–110. 24. Grassi D., Schmidt M.W. The melting of carbonated pelites from 70 to 700 km depth // J. Petrol. 2011. V. 52. P. 765–789. 25. Green D.H., Wallace M.E. Mantle metasomatism by ephemeral carbonatite melts // Nature 1988. V. 336. P. 459–462. 26. Haggerty S.E. Upper mantle mineralogy // J. Geodynam. 1995. V. 20. P. 331–364. 27. Howarth G.H., Barry P.H., Pernet-Fisher J.F. et al. Superplume metasomatism: evidence from Siberian mantle xenoliths // Lithos. 2014. V. 184. P. 209–224. 28. Kamenetsky V.S., Kamenetsky M.B., Weiss Y. et al. How unique is the Udachnaya-East kimberlite: Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland // Lithos. 2009. V. 112. P. 334–346. 29. Kelemen P.B., Dick H.J.B., Quick J.E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle // Nature. 1992. V. 358. P. 635–641. 30. Kjarsgaard B.A., Pearson D.G., Tappe S. et al. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem // Lithos. 2009. V. 112. P. 236–248. 31. Klein-BenDavid O., Logvinova A.M., Schrauder M. et al. High-Mg carbonatitic microinclusions in some Yakutian diamonds – a new type of diamond-forming fluid // Lithos 2009. V. 12. P. 648–659. 32. Kopylova M.G., Matveev S., Raudsepp M. Searching for parental kimberlite melt // Geochim. Cosmochim. Acta. 2007. V. 71. P. 3616–3629. 33. Lensky N.G., Niebo R.W., Holloway J.R. et al. Bubble nucleation as a trigger for xenolith entrapment in mantle melts // Earth Planet. Sci. Lett. 2006. V. 245. P. 278–288. 34. Müller J., Koch-Müller M., Rhede D. et al. Melting relations in the system CaCO3–MgCO3 at 6 GPa // Amer. Mineral. 2017. V. 102. P. 2440–2449. 35. Navon O. Diamond formation in the Earth’s mantle // Eds. Gurney J.J., Gurney J.L., Pascoe M.D., Richadson S.H. VII International Kimberlite conference 2. Cape Town: Red roof design. 1999. P. 584–604. 36. Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F. et al. Effect of Nitrogen Impurity on Diamond Crystal Growth Processes // Crystal Growth and Design. 2010. V. 10. P. 3169–3175. 37. Pearson D.G., Wittig N. The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths // Treatise on Geochemistry. 2-nd edition. 2014. P. 192–255. 38. Schrauder M., Navon O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana // Geochim. Cosmochim. Acta. 1994. V. 58. P. 761–771. 39. Shatskiy A., Litasov K.D., Sharygin I.S., Ohtani E. Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa // Gondwana Res. 2017. V. 45. P. 208–227. 40. Shatskiy A., Podborodnikov I.V., Arefiev A.V. et al. Revision of the CaCO3–MgCO3 phase diagram at 3 and 6 GPa // Amer. Mineral. 2018. V. 103. P. 441–452. 41. Shatskiy A., Sharygin I.S., Gavryushkin P.N. et al. The system K2CO3-MgCO3 at 6 GPa and 900–1450°C // Amer. Mineral. 2013. V. 98. P. 1593–1603. 42. Sokol A.G., Palyanova G.A., Palyanov Y.N. et al. Fluid regime and diamond formation in the reduced mantle: expe-rimental constraints // Geochim. Cosmochim. Acta. 2009. V. 73. P. 5820–5834. 43. Sokol A.G., Kupriyanov I.N., Palyanov Y.N. Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400°C: Implications for kimberlite formation // Earth Planet. Sci. Lett. 2013. V. 383. P. 58–67. 44. Sokol A.G., Borzdov Yu.M., Palyanov Yu.N., Khokhryakov A.F. High temperature calibration a multi-anvil high-pressure apparatus // High Pressure Res. 2015. V. 35. P. 139–147. 45. Sokol A.G., Kruk A.N., Chebotarev D.A., Palyanov Y.N. Carbonatite melt-peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle // Lithos. 2016. T. 248. P. 66–79. 46. Sokol A.G., Kruk A.N., Palyanov Y.N., Sobolev N.V. Stability of phlogopite in ultrapotassic kimberlite-like systems at 5.5–7.5 GPa // Contrib. Mineral. Petrol. 2017. V. 172. P. 21–43. 47. Stagno V., Frost D.J. Carbon speciation in the asthenosphere; experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages // Earth Planet. Sci. Lett. 2010. V. 300. P. 72–84. 48. Tappe S., Foley S.F., Kjarsgaard B.A., Romer R.L. et al. Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes // Geochim. Cosmochim. Acta. 2008. V. 72. P. 3258–3286. 49. Ulmer P., Sweeney R.J. Generation and differentiation of group II kimberlites: Constraints from a high-pressure experimental study to 10 GPa // Geochim. Cosmochim. Acta 2002. V. 66. P. 2139–2153. 50. Wyllie P.J. Magmas and volatile components // Amer. Mineral. 1979. V. 64. P. 469–500. 51. Zedgenizov D.A., Ragozin A.L, Shatsky V.S. et al. Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia) // Lithos. 2009. V. 112. P. 638–647.