Инд. авторы: Sokol A.G., Tomilenko A.A., Bul'bak T.A., Sokol I.A, Palyanov Y.N., Persikov E.S., Bukhtiyarov P.G.
Заглавие: Distribution of light alkanes in the reaction of graphite hydrogenation at pressure of 0.1–7.8 gpa and temperatures of 1000–1350°c
Библ. ссылка: Sokol A.G., Tomilenko A.A., Bul'bak T.A., Sokol I.A, Palyanov Y.N., Persikov E.S., Bukhtiyarov P.G. Distribution of light alkanes in the reaction of graphite hydrogenation at pressure of 0.1–7.8 gpa and temperatures of 1000–1350°c // High Pressure Research. - 2018. - ISSN 0895-7959. - EISSN 1477-2299.
Внешние системы: DOI: 10.1080/08957959.2018.1517342; РИНЦ: 35738636; SCOPUS: 2-s2.0-85053669780; WoS: 000452040700010;
Реферат: eng: We studied the effect of pressure and temperature on the hydrocarbon (HC) chain length distribution and total amount of HCs in the reaction of direct graphite hydrogenation at pressures of 0.1–7.8 GPa and temperatures of 1000–1350°C. An increase in pressure was found to lead both to an increase in the absolute yield of HCs due to direct graphite hydrogenation and to chain elongation of HC products. Light alkanes predominate among HCs in the entire studied range of P–T parameters. However, their concentration in quenched fluids increases as pressure is elevated, from less than 10 rel.% at 0.1 GPa to more than 40–50 rel.% at P ≥ 3.8 GPa. Methane is actually the only light alkane among reaction products at 0.1 GPa and 1000°C, while it is a minor component at 7.8 GPa and 1350°C. The most stable alkane at pressures above 3.8 GPa is ethane (C2H6).
Ключевые слова: FLUID; SYSTEMS; METHANE; NITROGEN; HYDROCARBONS; EARTHS MANTLE; DIAMOND FORMATION; P-T CONDITIONS; gas chromatography-mass spectrometry; graphite hydrogenation; hydrocarbons; HPHT experiment; STABILITY; WATER;
Издано: 2018
Цитирование: 1. Marty B., The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett. 2012;313–314:56–66. doi: 10.1016/j.epsl.2011.10.040 2. Rubie DC, Frost DJ, Mann U, et al. Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet Sci Lett. 2011;301:31–42. doi: 10.1016/j.epsl.2010.11.030 3. Sokol AG, Palyanova GA, Palyanov Y, et al. Fluid regime and diamond formation in the reduced mantle: experimental constraints. Geochim Cosmochim Acta. 2009;73:5820–5834. doi: 10.1016/j.gca.2009.06.010 4. Yang X, Keppler H, Li Y., Molecular hydrogen in mantle minerals. Geochem Perspect Lett. 2016;2:160–168. doi: 10.7185/geochemlet.1616 5. Luth RW., Chap 3.9, Volatiles in Earth’s mantle. 2nd ed. In: Holland HD, Turekian KK, editors. Treatise on geochemistry. Oxford: Elsevier; 2014. p. 355–391. 6. Etiope G, Sherwood Lollar B., Abiotic methane on Earth. Rev Geophys. 2013;51:276–299. doi: 10.1002/rog.20011 7. Taylor WR, Green DH., Measurement of reduced peridotite-COH solidus and implications for redox melting of the mantle. Nature. 1988;332:349–352. doi: 10.1038/332349a0 8. Matveev S, Ballhaus C, Fricke K, et al. Volatiles in the Earth’s mantle: I. synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim Cosmochim Acta. 1997;61:3081–3088. doi: 10.1016/S0016-7037(97)00142-7 9. Benedetti LR, Nguyen JH, Caldwell WA, et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science. 1999;286:100–102. doi: 10.1126/science.286.5437.100 10. Zerr A, Serghiou G, Boehler R, et al. Decomposition of alkanes at high pressures and temperatures. High Press Res. 2006;26:23–32. doi: 10.1080/08957950600608931 11. Hirai H, Konagai K, Kawamura T, et al. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys Earth Planet Inter. 2009;174:242–246. doi: 10.1016/j.pepi.2008.06.011 12. Sokol AG, Pal’yanov YN, Pal’yanova GA, et al. Diamond crystallization in fluid and carbonate-fluid systems under mantle PT conditions: 1. fluid composition. Geochem Inter. 2004;42:830–838. 13. Lobanov SS, Chen PN, Chen XJ, et al. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nature Comm. 2013;4. DOI:10.1038/ncomms344646 14. Sokol AG, Tomilenko AA, Bul’bak TA, et al. Carbon and nitrogen speciation in N-poor C-O-H-N fluids at 6.3 GPa and 1100–1400°C. Sci Reports. 2017;7. DOI:10.1038/s41598-017-00679-7 15. Kenney JF, Kutcherov VA, Bendeliani NA, et al. The evolution of multicomponent systems at high pressures: the thermodynamic stability of the hydrogen-carbon system: the genesis of hydrocarbons and the origin of petroleum. Proc Nat Acad Sci USA. 2002;99:10976–10981. doi: 10.1073/pnas.172376899 16. Belonoshko AB, Lukinov T, Rosengren A, et al. Synthesis of heavy hydrocarbons at the core-mantle boundary. Sci Reports. 2016;5:670. 17. Spanu L, Donadio D, Hohl D, et al. Stability of hydrocarbons at deep Earth pressures and temperatures. Proc Nat Acad Sci USA. 2011;108:6843–6846. doi: 10.1073/pnas.1014804108 18. Scott HP, Hemley RJ, Mao H, et al. Generation of methane in the Earth’s mantle: in situ high pressure–temperature measurements of carbonate reduction. Proc Nat Acad Sci USA. 2004;101:14023–14026. doi: 10.1073/pnas.0405930101 19. Sharma A, Cody GD, Hemley RJ., In situ diamond-anvil cell observations of methanogenesis at high pressures and temperatures. Energy Fuels. 2009;23:5571–5579. doi: 10.1021/ef9006017 20. Sephton MA, Hazen RM., On the origins of deep hydrocarbons. Rev Mineral Geochem. 2013;75:449–465. doi: 10.2138/rmg.2013.75.14 21. Sonin VM, Bul’bak TA, Zhimulev EI, et al. Synthesis of heavy hydrocarbons under PT conditions of the Earth’s upper mantle. Dokl Earth Sci. 2014;454:32–36. doi: 10.1134/S1028334X1401005X 22. Kolesnikov AY, Saul JM, Kutcherov VG., Chemistry of hydrocarbons under extreme thermobaric conditions. ChemistrySelect. 2017;2:1336–1352. doi: 10.1002/slct.201601123 23. Mukhina E, Kolesnikov A, Kutcherov V., The lower pT limit of deep hydrocarbon synthesis by CaCO3 aqueous reduction. Sci Reports. 2017;7:5749. doi: 10.1038/s41598-017-06155-6 24. Fedorov II, Chepurov AI, Osorgin NY, et al. Experimental and thermodynamic modeling of C-O-H fluid in equilibrium with graphite and diamond at high P-T parameters. Dokl Akad Nauk SSSR. 1991;320:710–712. Russian. 25. Sokol AG, Palyanov YN, Tomilenko AA, et al. Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa. Earth Planet Sci Lett. 2017;460:234–243. doi: 10.1016/j.epsl.2016.11.050 26. Persikov ES, Bukhtiyarov PG., Unique high gas pressure apparatus to study fluid–melts and fluid–solid–melts interaction with any fluid composition at the temperature up to 1400°C and at the pressures up to 5 kbars. J Conf Abs. 2002;7:85. 27. Persikov ES, Bukhtiyarov PG, Nekrasov AN., Water diffusion in basalt and andesite melts under high pressures. Geochem Int. 2010;48:213–225. doi: 10.1134/S0016702910030018 28. Palyanov Y, Borzdov Y, Khokhryakov AF, et al. Effect of nitrogen impurity on diamond crystal growth processes. Cryst Growth Des. 2010;10:3169–3175. doi: 10.1021/cg100322p 29. Sokol AG, Borzdov Y, Palyanov Y, et al. High-temperature calibration of a multi-anvil high-pressure apparatus. High Press Res. 2015;35:139–147. doi: 10.1080/08957959.2015.1017819 30. Li Y, Keppler H., Nitrogen speciation in mantle and crustal fluids. Geochim Cosmochim Acta. 2014;129:13–32. doi: 10.1016/j.gca.2013.12.031 31. Boettcher AL, Mysen BO, Allen JC., Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-media high-pressure apparatus. J Geophys Res. 1973;78:5898–5901. doi: 10.1029/JB078i026p05898 32. Hasterok D, Chapman DS., Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett. 2011;307:59–70. doi: 10.1016/j.epsl.2011.04.034 33. Robertson AJB., The pyrolysis of methane, ethane and n-butane on a platinum filament. Proc Royal Soc London A Math Phys Eng Sci. 1949;199(1058):394–411. doi: 10.1098/rspa.1949.0145 34. Horita J, Berndt ME., Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science. 1999;285:1055–1057. doi: 10.1126/science.285.5430.1055 35. Kutcherov VG, Kolesnikov AY, Dyuzheva TI, et al. Synthesis of complex hydrocarbon systems at temperatures and pressures corresponding to the Earth’s upper mantle conditions. Dokl Phys Chem. 2010;433:132–135. doi: 10.1134/S0012501610070079