Инд. авторы: Gavryushkin P.N., Sagatov N., Bekhtenova A., Litasov K.D., Popov Z.I., Inerbaev T.M.
Заглавие: Structure and properties of new high-pressure phases of fe7n3
Библ. ссылка: Gavryushkin P.N., Sagatov N., Bekhtenova A., Litasov K.D., Popov Z.I., Inerbaev T.M. Structure and properties of new high-pressure phases of fe7n3 // Journal of Experimental and Theoretical Physics Letters (JETP Letters). - 2018. - Vol.107. - Iss. 6. - P.379-383. - ISSN 0021-3640. - EISSN 1090-6487.
Внешние системы: DOI: 10.1134/S0021364018060061; РИНЦ: 35775099;
Реферат: eng: The structure and properties of high-pressure phases of iron nitrides Fe7N3 in the pressure range of 50–150 GPa have been studied with ab initio calculations within the electron density functional theory. A new phase Amm2-Fe7N3, which is the most energetically favorable in the pressure range of 43–128 GPa, has been found using the USPEX (Universal Structure Predictor: Evolutionary Xtallography) algorithms. It has been thermodynamically shown that another high-pressure phase β-Fe7N3 is isostructural to a similar phase of iron carbide. The elastic properties have been calculated for all modifications ε-, β-, and Amm2-Fe7N3 stable at high pressures.
Издано: 2018
Физ. характеристика: с.379-383
Цитирование: 1. F. Kaminsky and R. Wirth, Am. Mineralog. 102, 1667 (2017). 2. D. A. Zedgenizov and K. D. Litasov, Am. Mineralog. 102, 1769 (2017). 3. K. Litasov, A. Shatskiy, and E. Ohtani, Geochem. Int. 54, 914 (2016). 4. K. D. Litasov and A. F. Shatskii, Geol. Geofiz. 57, 31 (2016). 5. A. Leineweber, H. Jacobs, F. Hüning, H. Lueken, H. Schilderc, and W. Kockelmann, J. Alloys Compd. 288, 79 (1999). 6. K. Jack, Acta Crystallogr. 5, 404 (1952). 7. R. Niewa, D. Rau, A. Wosylus, K. Meier, M. Hanfland, M. Wessel, R. Dronskowski, D. A. Dzivenko, R. Riedel, and U. Schwarz, Chem. Mater. 21, 392 (2008). 8. Z. I. Popov, K. D. Litasov, P. N. Gavryushkin, S. G. Ovchinnikov, and A. S. Fedorov, JETP Lett. 101, 371 (2015). 9. K. D. Litasov, A. Shatskiy, D. S. Ponomarev, and P. N. Gavryushkin, J. Geophys. Res. 122, 3574 (2017). 10. K. D. Litasov, A. F. Shatskiy, S. G. Ovchinnikov, Z. I. Popov, D. S. Ponomarev, and E. Ohtani, JETP Lett. 98, 805 (2013). 11. S. Minobe, Y. Nakajima, K. Hirose, and Y. Ohishi, Geophys. Res. Lett. 42, 5206 (2015). 12. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). 13. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 14. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 15. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 17. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). 18. C. W. Glass, A. R. Oganov, and N. Hansen, Comput. Phys. Commun. 175, 713 (2006). 19. A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, Comput. Phys. Commun. 184, 1172 (2013). 20. A. O. Lyakhov, A. R. Oganov, and M. Valle, Comput. Phys. Commun. 181, 1623 (2010). 21. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006). 22. A. R. Oganov, C. W. Glass, and S. Ono, Earth Planet. Sci. Lett. 241, 95 (2006). 23. F. Herbstein and J. Snyman, Inorg. Chem. 3, 894 (1964). 24. K. Hofmann, N. Kalyon, C. Kapfenberger, L. K. Lamontagne, S. Zarrini, R. Berger, R. Seshadri, and B. Albert, Inorg. Chem. 54, 10873 (2015). 25. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). 26. R. E. Cohen, I. I. Mazin, and D. G. Isaak, Science (Washington, DC, U. S.) 275, 654 (1997). 27. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Trans. 0, 2832 (2008). 28. J. F. Adler and Q. Williams, J. Geophys. Res. 110, B01203 (2005).